Skip to main content
Log in

Genetic diversity of Triticum turgidum L. based on microsatellite markers

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Using microsatellite (SSR) markers, the genetic diversity and genetic relationships among 48 Triticum turgidum L. accessions, including 30 Triticum turgidum L. ssp. turgidum, 7 Triticum turgidum L. ssp. durum, 4 Triticum turgidum L. ssp. carthlicum, 3 Triticum turgidum L. ssp. paleocolchicum, 2 Triticum turgidum L. ssp. turanicum, and 2 Triticum turgidum L. ssp. polonicum accessions, were investigated. A total of 97 alleles were detected at 16 SSR loci. At each locus, the number of alleles ranged from two to fourteen, with an average of 6.1. The genetic similarity (GS) value ranged from 0.20 to 0.92, with the mean of 0.59. In cluster analysis, it was found the 48 Triticum turgidum L. accessions could be distinguished easily by SSR markers, whereas the six subspecies taxonomic entities of T. turgidum L. could not differentiate with each other, indicating that the morphological differences present among the six subspecies could not be reflected by the SSR markers. These results suggested that SSR markers had superiority in detecting the genetic diversity of T. turgidum L., while they were not good for studies of the phylogenic relationships among the subspecies of T. turgidum L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wei, Y.M., Zheng, Y.L., Liu, D.C., et al., Gliadin and HMW-Glutenin Variations in Triticum turgidum L. ssp. turgidum and T. aestivum L. Landraces Native to Sichuan, China, Wheat Inf. Serv., 2000, vol. 90, pp. 13–20.

    Google Scholar 

  2. Perry, D.J., Identification of Canadian Durum Wheat Varieties Using a Single PCR, Theor. Appl. Genet., 2004, vol. 109, pp. 55–61.

    Article  CAS  PubMed  Google Scholar 

  3. Alamerew, S., Chebotar, S., Huang, X.Q., and Röder, M.A., Genetic Diversity in Ethiopian Hexaploid and Tetraploid Wheat Germplasm Assessed by Microsatellite Markers, Genet. Res. Crop Evol., 2004, vol. 51, pp. 559–567.

    Article  CAS  Google Scholar 

  4. Caballero, L., Martin, L.M., and Alvarez, J.B., Intra-and Interpopulation Diversity for HMW Glutenin Subunits in Spanish Spelt Wheat, Genet. Res. Crop Evol., 2004, vol. 51, pp. 175–181.

    CAS  Google Scholar 

  5. Cao, W.G., Hucl, P., Scoles, G., and Chibbar, R.N., Genetic Diversity within Spelta and Macha Wheats Based on RAPD Analysis, Euphytica, 1998, vol. 104, pp. 181–189.

    Article  Google Scholar 

  6. Li, Y.C., Fahima, T., Beiles, A., et al., Microclimatic Stress and Adaptive DNA Differentiation in Wild Emmer Wheat, Triticum dicoccoides, Theor. Appl. Genet., 1999, vol. 98, pp. 873–883.

    CAS  Google Scholar 

  7. Fahima, T., Röder, M.S., Wendehake, K., et al., Microsatellite Polymorphism in Natural Populations of Wild Emmer Wheat, Triticum dicoccoides, in Israel, Theor. Appl. Genet., 2002, vol. 104, pp. 17–29.

    Article  CAS  PubMed  Google Scholar 

  8. Liu, C.Y. and Shepherd, K.W., Variation of B Subunits of Glutenin in Durum, Wild and Less-Widely Cultivated Tetraploid Wheats, Plant Breed., 1996, vol. 115, pp. 172–178.

    CAS  Google Scholar 

  9. Figliuolo, G. and Perrino, P., Genetic Diversity and Intraspecific Phylogeny of Triticum turgidum L. subsp. dicoccon (Schrank) Thell. Revealed by RFLPs and SSRs, Genet. Res. Crop Evol., 2004, vol. 51, pp. 519–527.

    Article  CAS  Google Scholar 

  10. Dong, Y.S. and Zheng, D.S., Genetic Resource of Chinese Wheat, Beijing: Chinese Agriculture Press, 2000.

    Google Scholar 

  11. Dou, Q.W. and Chen, P.D., C-Band Polymorphism in Tetraploid Wheat (Triticum turgidum) Landraces from Qinghai and Gansu, Acta Bot. Boteal.-Occident. Sin., 2003, vol. 23, pp. 335–338.

    Google Scholar 

  12. Liang, R.Q., Zhang, Y.R., Li, B.Y., et al., Polymorphism of Two Wx Subunits in Chinese Tetraploid Wheat, T. turgidum, and Discovery of Nature Waxy Accession, J. Agric. Biotechnol., 2001, vol. 9, pp. 112–118.

    Google Scholar 

  13. Zhang, D.F., Zheng, Y.L., Wei, Y.M., et al., Composition Analysis of High Molecular Weight Glutenin Subunits in Triticum turgidum L. ssp. turgidum, J. Triticeae Crops, 2003, vol. 23, pp. 29–32.

    CAS  Google Scholar 

  14. Lan, X.J., Zheng, Y.L., Liu, D.C., et al., Esterase Isozymes of Tetraploid Wheat Landraces from Sichuan., J. Sichuan Agric. Univ., 2003, vol. 21, pp. 88–90.

    Google Scholar 

  15. Liao, X.H. and Yang, W.Y., Determination on the Main Quality Characters in Some Sichuan Landraces of Turgidum Wheat, Seed, 1999, vol. 5, pp. 23–24.

    Google Scholar 

  16. Liu, D.C., Peng, Z.S., Yan, J., et al., Inheritance of Crossability of Triticum turgidum cv. Jianyangailanmai with Rye and Its Expression in Hexaploid Wheat Background, Hereditas (Lund, Swed.), 1998, vol. 20, pp. 26–29.

    Google Scholar 

  17. Korzum, V., Borner, A., Worland, A.J., et al., Application of Microsatellite Markers to Distinguish Intervarietal Chromosome Substitution Lines of Wheat (Triticum aestivum L.), Euphytica, 1997, vol. 95, pp. 149–155.

    Google Scholar 

  18. Röder, M.S., Plaschke, J., Konig, S.U., et al., Abundance, Variability and Chromosomal Location of Microsatellites in Wheat, Mol. Gen. Genet., 1995, vol. 246, pp. 327–333.

    Article  PubMed  Google Scholar 

  19. Wei, Y.M., Zheng, Y.L., Yan, Z.H., et al., Genetic Diversity in Chinese Endemic Wheats Based on STS and SSR Markers, Wheat Inf. Serv., 2003, vol. 97, pp. 9–15.

    Google Scholar 

  20. Zheng, Y.L., Zhang, Z.Q., Wei, Y.M., et al., Genetic Diversity of Sichuan Elite Wheat Cultivars Based on Microsatellites and STS-PCR Markers, J. Genet. Breed., 2003, vol. 57, pp. 47–58.

    CAS  Google Scholar 

  21. Sharp, P.J., Kresis, M., Shewry, P., and Gale, M.D., Location of β-Amylase Sequences in Wheat and Its Relatives, Theor. Appl. Genet., 1988, vol. 75, pp. 286–290.

    Article  CAS  Google Scholar 

  22. Röder, M.S., Korzun, V., Wendehake, K., et al., A Microsatellite Map of Wheat, Genetics, 1998, vol. 149, pp. 2007–2023.

    PubMed  Google Scholar 

  23. Tixier, M.H., Sourdille, P., Roder, M., et al., Detection of Wheat Microsatellites Using a Nonradioactive Silver-Nitrate Staining Method, J. Genet. Breed., 1997, vol. 51, pp. 175–177.

    CAS  Google Scholar 

  24. Nei, M. and Li, W., Mathematical Model for Studying Genetic Variation in Terms of Restriction Endonucleases. Proc. Natl. Acad. Sci. USA, 1979, vol. 76, pp. 597–602.

    Google Scholar 

  25. Sneath, P.H.A. and Sokal, R.R., Numerical Taxonomy, San Francisco: Freeman, 1973.

    Google Scholar 

  26. Rohlf, F.J., NTSYS-pc Version 1.80, Distribution by Exeter Software, New York: Setauket, 1993.

    Google Scholar 

  27. Prasad, M., Varshney, P.K., Roy, J.K., et al., The Use of Microsatellites for Detecting DNA Polymorphism, Genotype Identification and Genetic Diversity in Wheat, Theor. Appl. Genet., 2000, vol. 100, pp. 584–592.

    CAS  Google Scholar 

  28. Nevo, E., Korol, A.B., Beiles, A., and Fahima, T., Evolution of Wild Emmer and Wheat Improvement, New York: Springer-Verlag, 2002.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., Zhang, D.F., Wei, Y.M. et al. Genetic diversity of Triticum turgidum L. based on microsatellite markers. Russ J Genet 42, 311–316 (2006). https://doi.org/10.1134/S1022795406030124

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795406030124

Keywords

Navigation