Skip to main content
Log in

Effect of Abnormal Light/Dark Cycles on the Pigment Complex of Brassicaceae and Solanaceae Plants

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Under controlled environmental conditions, the authors studied the effect of extended light/dark cycles of 24/12, 48/24, 96/48, and 120/60 h and continuous lighting on the content and ratio of photosynthetic and nonphotosynthetic pigments in a number of Solanaceae (eggplant (Solanum melongena L.), sweet pepper (Capsicum annuum L.), tobacco (Nicotiana tabacum L.), and tomato (Solanum lycopersicum L.)) and Brassicaceae (broccoli (Brassica oleracea var. italica Plenck), mizuna (Brassica rapa ssp nipposinica (L.H. Bailey) Hanelt), arugula (Eruca vesicaria sp. sativa Mill.), and cauliflower (Brassica oleracea L. var. botrytis L.)) plants. Plants were grown in controlled-climate chambers at 23°С and light intencity of 270 µmol/(m2 s) PAR. Control plants were grown under photoperiod of 16/8 h. Continuous lighting decreased the content of chlorophyll, its share in light-harvesting complex and chlorophyll to carotenoids ratio, but increased chlorophyll a/b ratio and the content of anthocyanins and flavonoids; these effects were differently manifested depending on plant species. At all other examined light/dark cycles (24/12, 48/24, 96/48, and 120/60 h) where average daily light integral did not differ from such under common photoperiod (16/8 h), changes in pigment complex were often observed similar to photoprotective reactions occurring upon exposure of plants to excess illumination (a decrease in the content of photosynthetic pigments, modification of their ratios, and accumulation of protective, nonphotosynthetic pigments). At the same time, plant responses were species-specific. On the whole, the obtained results have shown that changes within the plant pigment complex may be induced not only by excessive light energy coming to plants, but also by distribution of daily light integral in time as it occurs in response to abnormal light/dark cycles that, in the authors’ opinion, cause a circadian asynchrony.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Despommier, D., The Vertical Farm: Feeding the World in the 21st Century, New York: Thomas Dunne Books, 2010.

    Google Scholar 

  2. Kozai, T., Nui, G., and Takagaki, M., Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production, Cambridge, MA: Academic Press, 2015.

    Google Scholar 

  3. van Delden, S.H., Sharathkumar, M., Butturini, M., Graamans, L.J.A., Heuvelink, E., Kacira, M., Kaiser, E., Klamer, R.S., Klerkx, L., Kootstra, G., Loeber, A., Schouten, R.E., Stanghellini, C., van Ieperen, W., Verdonk, J.C., et al., Current status and future challenges in implementing and upscaling vertical farming systems, Nature Food, 2021, vol. 2, p. 944. https://doi.org/10.1038/s43016-021-00402-w

    Article  CAS  PubMed  Google Scholar 

  4. Kozai, T. and Niu, G., Role of the plant factory with artificial lighting (PFAL) in urban areas, in Plant Factory: An Indoor Vertical Farming System for Efficient Quality Food Production, Kozai, T., Ed., London: Academic Press, 2020, p. 7.

    Google Scholar 

  5. Chen, Xl., Li, Yl., Wang, Lc., Yang, Qc., and Guo, Wz., Responses of butter leaf lettuce to mixed red and blue light with extended light/dark cycle period, Sci. Rep., 2022, vol. 12, p. 6924. https://doi.org/10.1038/s41598-022-10681-3

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bowsher, C.G., Long, D.M., Oaks, A., and Rothstein, S.J., Effect of light/dark cycles on expression of nitrate assimilatory genes in maize shoots and roots, Plant Physiol., 1991, vol. 95, p. 281. https://doi.org/10.1104/pp.95.1.281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chang, A.C., Yang, T.Y., and Riskowskic, G.L., Ascorbic acid, nitrate, and nitrite concentration relationship to the 24 hour light/dark cycle for spinach grown in different condition, Food Chem., 2013, vol. 138, p. 382. https://doi.org/10.1016/j.foodchem.2012.10.036

    Article  CAS  PubMed  Google Scholar 

  8. Kurata, H., Achioku, T., and Furusaki, S., The light/dark cycle operation with an hour-scale period enhances caffeine production by Coffea arabica, cells, Enzyme Microb. Technol., 1998, vol. 23, p. 518. https://doi.org/10.1016/S0141-0229(98)00081-7

    Article  CAS  Google Scholar 

  9. Chen, X.L. and Yang, Q.C., Effects of intermittent light exposure with red and blue light emitting diodes on growth and carbohydrate accumulation of lettuce, Sci. Hortic., 2018, vol. 234, p. 220. https://doi.org/10.1016/j.scienta.2018.02.055

    Article  CAS  Google Scholar 

  10. Lichtenthaler, H.K. and Wellburn, A.R., Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents, Biochem. Soc. Trans., 1983, vol. 603, p. 591. https://doi.org/10.1042/bst0110591

    Article  Google Scholar 

  11. Lichtenthaler, H.K., Chlorophylls and carotenoids: Pigment of photosynthetic biomembranes, Methods Enzymol., 1987, vol. 148, p. 350. https://doi.org/10.1016/0076-6879(87)48036-1

    Article  CAS  Google Scholar 

  12. Kolupaev, Y.E., Fisova, E.N., Yastreb, T.O., Ryabchun, N.I., and Kirichenko, V.V., Effect of hydrogen sulfide donor on antioxidant state of wheat plants and their resistance to soil drought, Russ. J. Plant Physiol., 2019, vol. 66, p. 59. https://doi.org/10.1134/S1021443719010084

    Article  CAS  Google Scholar 

  13. Velikova, V. and Edreva, A., Oxidative stress and some antioxidant system in acid rain-treated bean plants: Protective role of exogenous polyamines, Plant Sci., 2000, vol. 151, p. 59. https://doi.org/10.1016/S0168-9452(99)00197-1

    Article  CAS  Google Scholar 

  14. Heath, R.L. and Packer, L., Photoperioxidation in isolated chloroplasts I. Kinetics and stoichiometry of fatty acid peroxidation, Arch. Biochem. Biophys., 1968, vol. 125, p. 189.

    Article  CAS  PubMed  Google Scholar 

  15. Shibaeva, T.G., Rubaeva, A.A., Sherudilo, E.G., and Titov, A.F., Continuous lighting increases yield and nutritional value and decreases nitrate content in Brassicaceae microgreens, Russ. J. Plant Physiol., 2023, vol. 70, p. 118. https://doi.org/10.1134/S1021443723601337

    Article  CAS  Google Scholar 

  16. Shibaeva, T.G., Mamaev, A.V., Sherudilo, E.G., and Titov, A.F., The role of photosynthetic daily light integral in plant response to extended photoperiods, Russ. J. Plant Physiol., 2022, vol. 69, p. 7. https://doi.org/10.1134/S1021443722010216

    Article  CAS  Google Scholar 

  17. Llorente, B., Martinez-Garcia, J., Stange, C., and Rodriguez-Concepcion, M., Illuminating colors: regulation of carotenoid biosynthesis and accumulation by light, Curr. Opin. Plant Biol., 2017, vol. 37, p. 49. https://doi.org/10.1016/j.pbi.2017.03.011

    Article  CAS  PubMed  Google Scholar 

  18. Maslova, T.G., Markovskaya, E.F., and Slemnev, N.N., Functions of carotenoids in the leaves of higher plants (review), Zh. obsch. biol., 2020, vol. 81, p. 297. https://doi.org/10.31857/S0044459620040065

    Article  Google Scholar 

  19. Shibaeva, T.G., Sherudilo, E.G., Rubaeva, A.A., and Titov, A.F., Continuous LED lighting enhances yield and nutritional value of four genotypes of Brassicaceae microgreens, Planta, 2022, vol. 11, p. 176. https://doi.org/10.3390/plants11020176

    Article  CAS  Google Scholar 

  20. Smillie, R.M. and Hetherington, S.E., Photoabatement by anthocyanin shields photosynthetic systems from light stress, Photosynthetica, 1999, vol. 36, p. 451. https://doi.org/10.1023/A:1007084321859

    Article  CAS  Google Scholar 

  21. Steyn, W.J. and Wand, S.J.E., Anthocyanins in vegetative tissues: a proposed unified function in photoprotection, New Phytol., 2002, vol. 155, p. 349. https://doi.org/10.1046/j.1469-8137.2002.00482.x

    Article  CAS  PubMed  Google Scholar 

  22. Timmins, G.S., Holbrook, N.M., and Field, T.S., Le rouge et le noir: Are anthocyanins plant melanins?, Adv. Bot. Res., 2002, vol. 37, p. 17. https://doi.org/10.1016/S0065-2296(02)37041-1

    Article  CAS  Google Scholar 

  23. Nielsen, S.L. and Simonsen, A.M., Photosynthesis and photoinhibition in two differently coloured varieties of Oxalis triangularis − the effect of anthocyanin content, Photosynthetica, 2011, vol. 49, p. 346. https://doi.org/10.1007/s11099-011-0042-y

    Article  CAS  Google Scholar 

  24. Trojak, M. and Skowron, E., Role of anthocyanins in high-light stress response, World Sci. News, 2017, vol. 81, p. 150.

    CAS  Google Scholar 

  25. Makarevich, A.M., Shutova, A.G., Spiridovich, E.V., and Reshetnikov, V.N., Functions and properties of anthocyanins in plant materials, Tr. BGU, 2010, vol. 4, p. 1.

    Google Scholar 

  26. Havaux, M. and Kloppstech, K., The protective functions of carotenoid and flavonoid pigments against excess visible radiation at chilling temperature investigated in Arabidopsis npq and tt mutants, Planta, 2001, vol. 213, p. 953. https://doi.org/10.1007/s004250100572

    Article  CAS  Google Scholar 

  27. Olsson, L., Veit, M., Weissenböck, G., and Bornman, J., Differential flavonoid response to enhanced UV-B radiation in Brassica napus, Phytochem., 1998, vol. 49, p. 1021.

    Article  CAS  Google Scholar 

  28. Alexieva, V., Sergiev, I., Mapelli, S., and Karanov, E., The effect of drought and ultraviolet radiation on growth and stress markers in pea and wheat, Plant, Cell Environ., 2001, vol. 24, p. 881. https://doi.org/10.1046/j.1365-3040.2001.00778.x

    Article  Google Scholar 

  29. Lois, R. and Buchanan, B.B., Severe sensitivity to ultraviolet radiation in an Arabidopsis mutant deficient in flavonoid accumulation. II. Mechanisms of UV-resistance in Arabidopsis, Planta, 1994, vol. 194, p. 504.

    Article  Google Scholar 

  30. Neill, S.O., Gould, K.S., Kilmartin, P.A., Mitchell, K.A., and Markham, K.R., Antioxidant capacities of green and cyanic leaves in the sun species, Quintinia serrata, Funct. Plant Biol., 2002, vol. 29, p. 1437. https://doi.org/10.1071/FP02100

    Article  CAS  PubMed  Google Scholar 

  31. Neill, S.O. and Gould, K.S., Anthocyanins in leaves: light attenuators or antioxidants?, Funct. Plant Biol., 2003, vol. 30, p. 865. https://doi.org/10.1071/FP03118

    Article  CAS  PubMed  Google Scholar 

  32. Zang, K.-M., Yu, H.-J., Shi, K., Zhou, Y.-H., Yu, J.-Q., and Xia, X.-J., Photoprotective roles of anthocyanins in Begonia semperflorens, Plant Sci., 2010, vol. 179, p. 202. https://doi.org/10.1016/J.PLANTSCI.2010.05.006

    Article  Google Scholar 

  33. Zhang, T.-J., Chow, W.S., Liu, X.-T., Zhang, P., Liu, N., and Peng, C.-L., A magic red coat on the surface of young leaves: Anthocyanins distributed in trichome layer protect Castanopsis fissa leaves from photoinhibition, Tree Physiol., 2016, vol. 36, p. 1296. https://doi.org/10.1093/treephys/tpw080

    Article  CAS  PubMed  Google Scholar 

  34. Zhu, H., Zhang, T.J., and Zheng, J., Anthocyanins function as a light attenuator to compensate for insufficient photoprotection mediated by nonphotochemical quenching in young leaves of Acmena acuminatissima in winter, Photosynthetica, 2018, vol. 56, p. 445. https://doi.org/10.1007/s11099-017-0740-1

    Article  CAS  Google Scholar 

  35. Kumar, S. and Pandey, A. K., Chemistry and biological activities of flavonoids: an overview, Sci. World J., 2013. https://doi.org/10.1155/2013/162750

  36. Pojer, E., Mattivi, F., Johnson, D., and Stockley, C.S., The case for anthocyanin consumption to promote human health: a review, Comp. Rev. Food Sci. Food Saf., 2013, vol. 12, p. 483. https://doi.org/10.1111/1541-4337.12024

    Article  CAS  Google Scholar 

  37. Lanoue, J., St. Louis, S., Little, C., and Hao, X., Continuous lighting can improve yield and reduce energy costs while increasing or maintaining nutritional contents of microgreens, Front. Plant Sci., 2022, vol. 13, p. 983222. https://doi.org/10.3389/fpls.2022.983222

    Article  PubMed  PubMed Central  Google Scholar 

Download references

ACKNOWLEDGMENTS

The research was carried out using the equipment of the Core Facility of the Karelian Research Center, Russian Academy of Sciences.

Funding

This work was supported by the Russian Science Foundation (project no. 23-16-00160).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. G. Shibaeva.

Ethics declarations

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

Additional information

Translated by N. Balakshina

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abbreviations: DLI—daily light integral.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shibaeva, T.G., Sherudilo, E.G., Rubaeva, A.A. et al. Effect of Abnormal Light/Dark Cycles on the Pigment Complex of Brassicaceae and Solanaceae Plants. Russ J Plant Physiol 70, 168 (2023). https://doi.org/10.1134/S1021443723700310

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443723700310

Keywords:

Navigation