Skip to main content
Log in

Application of In Silico Analysis to Determine Morphogenesis in Plant Tissue Culture

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The work proposed and tested a new approach to optimizing biotechnological processes, including the process of microclonal propagation. The proposed method is based on constructing a map of the similarity of the structures of molecules of secondary metabolites of plant extracts and molecules that regulate the processes of plant morphogenesis (primarily phytohormones) with subsequent prediction of the action of the extract. Lichen extract of Cetraria islandica (L.) Ach. (Parmeliaceae)was used as an example, for which the range of secondary metabolites contained is well known. The structural similarity of aliphatic secondary compounds of lichen (protolichesteric and lichesteric acids) with strigolactones (to a greater extent), as well as with gibberellins and brassinosteroids, was revealed. Based on the analysis of the results obtained, a prediction was made about the dose-dependent effect of the lichen extract of C. islandica on growth processes and rhizogenesis of microshootsin vitro. This hypothesis was experimentally tested in experiments with microclonal propagation of higher plants Lonicera caerulea L. and Populus tremula L. As a result of the work carried out, it was established that the addition of extract from C. islandicaat a concentration of 10–50 mg/L in the nutrient medium increased the multiplication rate of L. caerulea (by 31%) and P. tremula (by 8%). The rhizogenic activity of the lichen extract at the same concentrations (10–50 mg/L of medium), similar to the activity of strigolactones and gibberellins, has been experimentally proven. The extract has also been shown to have a positive effect of C. islandica (50 mg/L) on elongation of microshoots of both cultures and hemogenesisof P. tremula.The proposed approach allows for optimizing studies aimed at identifying the effect of various extracts on plant morphogenesis in vitroby preliminary constructing a map of the similarity of secondary metabolites contained in extracts (including according to literature data) and known growth regulators (including phytohormones) with subsequent prediction of the effect of the extract.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Pawar, G., Madden, J.C., Ebbrell, D., James, W.F., and Cronin, M.T.D., In silicotoxicology data resources to support read-across and (Q)SAR, Front Pharmacol., 2019, vol. 10, p. 561. https://doi.org/10.3389/fphar.2019.00561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Calcott, M.J., Ackerley, D.F., Knight, A., Keyzers, R.A., and Owen, J.G., Secondary metabolism in the lichen symbiosis, Chem. Soc. Rev., 2018, vol. 47, p. 1730. https://doi.org/10.1039/C7CS00431A

    Article  CAS  PubMed  Google Scholar 

  3. Asplund, J. and Wardle, D.A., How lichens impact on terrestrial community and ecosystem properties, Biol. Rev. Cambridge Philos. Soc., 2017, vol. 92, p. 1720. https://doi.org/10.1111/brv.12305

    Article  PubMed  Google Scholar 

  4. Urbanavichyus, G.P., Spisok likhenoflory Rossii (List of Lichen Flora of Russia), St. Petersburg: Nauka, 2010.

  5. Xu, M., Heidmarsson, S., Thorsteinsdottir, M., Kreuzer, M., Hawkins, J., Omarsdottir, S., and Olafsdottir, E.S., Authentication of iceland moss (Cetrariaislandica) by UPLC-QToF-MS chemical profiling and DNA barcoding, Food Chem., 2018, vol. 245, p. 989.https://doi.org/10.1016/j.foodchem.2017.11.073

    Article  CAS  PubMed  Google Scholar 

  6. Ogmundsdóttir, H.M., Zoëga, G.M., Gissurarson, S.R., and Ingólfsdóttir, K., Anti-proliferative effects of lichen-derived inhibitors of 5-lipoxygenase on malignant cell-lines and mitogen-stimulated lymphocytes, J. Pharm. Pharmacol., 1998, vol. 50, p. 107. https://doi.org/10.1111/j.2042-7158.1998.tb03312.x

    Article  PubMed  Google Scholar 

  7. Bucar, F., Schneider, I., Ögmundsdóttir, H., and Ingólfsdóttir, K., Anti-proliferative lichen compounds with inhibitory activity on 12(S)-HETE production in human platelets, Phytomed., 2004, vol. 11, p. 602. https://doi.org/10.1016/j.phymed.2004.03.004

    Article  CAS  Google Scholar 

  8. Freysdottir, J., Omarsdottir, S., Ingólfsdóttir, K., Vikingsson, A., and Olafsdottir, E.S., In vitro and in vivo immunomodulating effects of traditionally prepared extract and purified compounds from Cetraria islandica, Int. Immunopharm., 2008, vol. 8, p. 423. https://doi.org/10.1016/j.intimp.2007.11.007

    Article  CAS  Google Scholar 

  9. Luzina, O.A. and Salakhutdinov, N.F. Biological activity of usnic acid and its derivatives: Part 2. effects on higher organisms, Mol. Physicochem. Aspects. Russ. J. Bioorg. Chem., 2016, vol. 42, p. 249. https://doi.org/10.1134/S1068162016030109

    Article  CAS  Google Scholar 

  10. Cardarelli, M., Serino, G., Campanella, L., Ercole, P., De Cicco Nardone, F., Alesiani, O., and Rossiello, F., Antimitotic effects of usnic acid on different biological systems, Cell. Mol. Life Sci.,1997, vol. 53, p. 667. https://doi.org/10.1007/s000180050086

    Article  CAS  PubMed  Google Scholar 

  11. Latkowska, E., Lechowski, Z., Bialczyk, J., and Pilarski, J., Photosynthesis and water relations in tomato plants cultivated long-term in media containing (+)-Usnic Acid, J. Chem. Ecol., 2006, vol. 32, p. 2053. https://doi.org/10.1007/s10886-006-9128-6

    Article  CAS  PubMed  Google Scholar 

  12. Lechowski, Z., Latkowska, E., and Bialczyk, J., Accumulation of biomass and some macroelements in tomato plants grown in media with (+)-usnic acid, Environ. Exp. Bot., 2006, vol. 56, p. 239. https://doi.org/10.1016/j.envexpbot.2005.03.001

    Article  CAS  Google Scholar 

  13. Inoue, H., Noguchi, M., and Kubo, K., Site of inhibition of usnic acid at oxidizing side of photosystem 2 of spinach chloroplasts, Photosynth., 1987, vol. 21, p. 88.

    CAS  Google Scholar 

  14. Lascève, G. and Gaugain, F., Effects of usnicacid on sunflower and maize plantlets, J. Plant Physiol., 1990, vol. 136, p. 723. https://doi.org/10.1016/S0176-1617(11)81352-0

    Article  Google Scholar 

  15. Orús, M., Estévez, M., and Vicente, C., Manganese depletion in chloroplasts of Quercus roundifolia during chemical simulation of lichen epiphytic states, Physiol. Plant., 2006, vol. 52, p. 263. https://doi.org/10.1111/j.1399-3054.1981.tb08503.x

    Article  Google Scholar 

  16. Follmann, G., Flechtenstoffe und stecklingsbewurzelung, Die Naturwissenschaften, 1965, vol. 52, p. 266. https://doi.org/10.1007/BF00602940

    Article  CAS  Google Scholar 

  17. Sander, T., Freyss, J., von Korff, M., and Rufener, C., Data warrior: an open-source rogramfor chemistry aware data visualization and analysis, J. Chem. Inf. Model., 2015, vol. 55, p.460. https://doi.org/10.1021/ci500588j

    Article  CAS  PubMed  Google Scholar 

  18. Goga, M., Antreich, S., Backor, M., Weckwerth, W., and Lang, I., Lichen secondary metabolites affect growth of Physcomitrella patens by allelopathy, Protoplasma, 2017, vol. 254, p. 1307. https://doi.org/10.1007/s00709-016-1022-7

    Article  CAS  PubMed  Google Scholar 

  19. Murashige, T. and Skoog, F., A revised medium for rapid growth and bio assays with tobacco tissue cultures, Physiol. Plant., 1962, vol. 15, p. 473. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  20. Ingolfsdottir, K., Breu, W., Huneck, S., Gudjonsdottir, G.A., Müller-Jakic, B., and Wagner, H., In vitro inhibition of 5-lipoxygenase by protolichesterinic acid from Cetrariaislandica, Phytomed., 1994, vol. 1, p. 187. https://doi.org/10.1016/S0944-7113(11)80063-2

    Article  CAS  Google Scholar 

  21. Mishra, S., Upadhyay, S., and Shukla, R.K., The role of strigolactones and their potential cross-talk under hostile ecological conditions in plants, Front. Plant Physiol., 2017, vol. 7, p. 691. https://doi.org/10.3389/fphys.2016.00691

    Article  Google Scholar 

  22. Mitra, D., Rad, K.V., Chaudhary, P., Ruparelia, J., Sagarika, M.S., Boutaj, H., Mohapatra, P.K., and Das, P.P., Involvement of strigolactone hormone in root development, influence and interaction with mycorrhizal fungi in plant: Mini-review, Curr. Res. Microb. Sci., 2021, vol. 2, p. 1. https://doi.org/10.1016/j.crmicr.2021.100026

    Article  CAS  Google Scholar 

  23. Rehman, N.U., Li, X., Zeng, P., Guo, S., Jan, S., Liu, Y., Huang, Y., and Xie, Q., Harmony but not uniformity: role of strigolactone in plants, Biomolec., 2021, vol. 11, p. 1616. https://doi.org/10.3390/biom11111616

    Article  CAS  Google Scholar 

  24. Rizza, A. and Jones, A.M., The makings of a gradient: spatiotemporal distribution of gibberellins in plant development, Curr. Opin. Plant Biol., 2019, vol. 47, p. 9. https://doi.org/10.1016/j.pbi.2018.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pouvreau, J.-B., Gaudin, Z., Auger, B., Lechat, M.-M., Gauthier, M., Delavault, P., and Simier, P., A high-throughput seed germination assay for root parasitic plants, Plant Meth., 2013, vol. 9, p. 1. https://doi.org/10.1186/1746-4811-9-32

    Article  CAS  Google Scholar 

  26. Rasmussen, A., Depuydt, S., Goormachtig, S., and Geelen, D., Strigolactones fine-tune the root system, Planta, 2013, vol. 238, p. 615. https://doi.org/10.1007/s00425-013-1911-3

    Article  CAS  PubMed  Google Scholar 

  27. Cornea-Cipcigan, M., Pamfil, D., Sisea, CR., and Mărgăoan, R., Gibberellic acid can improve seed germination and ornamental quality of selected cyclamen species grown under short and long days, Agronomy, 2020, vol. 10, p. 516. https://doi.org/10.3390/agronomy10040516

    Article  CAS  Google Scholar 

  28. Behera, B., Verma, N., Sonone, A., and Makhija, U., Experimental studies on the growth and usnic acid production in “lichen” Usnea ghattensis in vitro, Microbiol. Res., 2006, vol. 161, p. 232. https://doi.org/10.1016/j.micres.2005.08.006

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The work was carried out using the resources of the Center for Collective Use “Ecology, Biotechnology,and Processes for Obtaining Environmentally Friendly Energy Resources” of the Volga State Technological University, Yoshkar-Ola.

Funding

The work was carried out with financial support from the Ministry of Science and Higher Education of the Russian Federation (no. 075-15-2021-674).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Sergeev.

Ethics declarations

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This work does not contain any studies involving human and animal subjects.

CONFLICT OF INTEREST

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malakhova, K.V., Zontikov, D.N., Shcherbakova, A.I. et al. Application of In Silico Analysis to Determine Morphogenesis in Plant Tissue Culture. Russ J Plant Physiol 70, 163 (2023). https://doi.org/10.1134/S1021443723700231

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443723700231

Keywords:

Navigation