Skip to main content
Log in

Lichen secondary metabolites affect growth of Physcomitrella patens by allelopathy

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Lichen secondary metabolites can function as allelochemicals and affect the development and growth of neighboring bryophytes, fungi, vascular plants, microorganisms, and even other lichens. Lichen overgrowth on bryophytes is frequently observed in nature even though mosses grow faster than lichens, but there is still little information on the interactions between lichens and bryophytes.

In the present study, we used extracts from six lichen thalli containing secondary metabolites like usnic acid, protocetraric acid, atranorin, lecanoric acid, nortistic acid, and thamnolic acid. To observe the influence of these metabolites on bryophytes, the moss Physcomitrella patens was cultivated for 5 weeks under laboratory conditions and treated with lichen extracts. Toxicity of natural mixtures of secondary metabolites was tested at three selected doses (0.001, 0.01, and 0.1 %). When the mixture contained substantial amounts of usnic acid, we observed growth inhibition of protonemata and reduced development of gametophores. Significant differences in cell lengths and widths were also noticed. Furthermore, usnic acid had a strong effect on cell division in protonemata suggesting a strong impact on the early stages of bryophyte development by allelochemicals contained in the lichen secondary metabolites.

Biological activities of lichen secondary metabolites were confirmed in several studies such as antiviral, antibacterial, antitumor, antiherbivore, antioxidant, antipyretic, and analgetic action or photoprotection. This work aimed to expand the knowledge on allelopathic effects on bryophyte growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ahmadjian V, Hale ME (1973) The Lichens. Academic Press, New York, p 649, ISBN 0-12-044950-1

    Google Scholar 

  • Al Bekairi AM, Qureshi S, Shah AH, Krishna DR, Chaudhry MA (1991) Effect of dextro usnic acid on testicular nucleic acids and epididymal spermatozoa in mice. Fitoterapia 62(3):258–260

    CAS  Google Scholar 

  • Armstrong RA, Welch AR (2007) Competition in lichen communities. In. Symbiosis 43:1–12

    Google Scholar 

  • Ascaso C, Rapsch S (1985) Chloroplast-ultrastructure and chlorophyll content in leaves from Quercus branches with and without epiphytic lichen thalli. Plant Cell Environ 8(9):651–656. doi:10.1111/1365-3040.ep11611691

    CAS  Google Scholar 

  • Bačkor M, Klemová K, Bačkorová M, Ivanova V (2010) Comparison of the Phytotoxic Effects of Usnic Acid on Cultures of Free-Living Alga Scenedesmus quadricauda and Aposymbiotically Grown Lichen Photobiont Trebouxia erici. J Chem Ecol 36(4):405–411. doi:10.1007/s10886-010-9776-4

    Article  PubMed  Google Scholar 

  • Burkin AA, Tolpysheva TYu, Kononenko GP (2012) Preservation of secondary fungal metabolites in herbarium lichen specimens. Moscow University Biological Sciences Bulletin 67(3):121-125, doi:10.3103/S0096392512030030

  • Cardarelli M, Serino G, Campanella L, Ercole P, de Cicco Nardone F, Alesiani O, Rossiello F (1997) Antimitotic effects of usnic acid on different biological systems. Cell Mol Life Sci 53(8):667–672. doi:10.1007/s000180050086

    Article  CAS  PubMed  Google Scholar 

  • Cocchietto M, Skert N, Nimis P, Sava G (2002) A review on usnic acid, an interesting natural compound. Naturwissenschaften 89(4):137–146. doi:10.1007/s00114-002-0305-3

    Article  CAS  PubMed  Google Scholar 

  • Cove DJ (1993) The Moss Physcomitrella patens, a Model System with Potential for the Study of Plant Reproduction. Plant Cell Online 5(10):1483–1488. doi:10.1105/tpc.5.10.1483

    Article  Google Scholar 

  • During HJ, van Tooren BF (1990) Bryophyte interactions with other plants. In. Bot J Linn Soc 104(1-3):79–98. doi:10.1111/j.1095-8339.1990.tb02212.x

    Article  Google Scholar 

  • Fahselt D (1994) Secondary biochemistry of lichens. In. Symbiosis 16:117–165

    CAS  Google Scholar 

  • Feige GB, Lumbsch HT, Huneck S, Elix JA (1993) Identification of lichen substances by a standardized high-performance liquid chromatographic method. J Chromatogr A 646(2):417–427. doi:10.1016/0021-9673(93)83356-W

    Article  CAS  Google Scholar 

  • Frahm JP, Specht A, Reifenrath K, Vargas YL (2000) Allelopathic effects of crustose lichens, epiphytic bryophytes and vascular plants. In. Nova Edwigia 70:245–254

    Google Scholar 

  • Gang Y-Y, Du G-S, Shi D-J, Wang M-Z, Li X-D, Hua Z-L (2003) Establishment of in vitro regeneration system of the Atrichum mosses. Acta Bot. Sin. 45:1475-1480

  • Gardner CHR, Mueller DMJ (1981) Factors Affecting the Toxicity of Several Lichen Acids. Effect of pH and Lichen Acid Concentration. In. Am J Bot 68(1):87. doi:10.2307/2442995

    Article  CAS  Google Scholar 

  • Giordano S, Alfano F, Basile A, Cobianchi R (1999) Toxic effects of the thallus of the lichen on the growth and morphogenesis of bryophytes. Cryptogam Bryol 20(1):35–41. doi:10.1016/S1290-0796(99)80005-4

    Article  Google Scholar 

  • Glime JM (2007) Bryophyte Ecology, vol 1, Physiological Ecology

    Google Scholar 

  • Hauck M, Huneck S (2007) The putative role of fumarprotocetraric acid in the manganese tolerance of the lichen Lecanora conizaeoides. In. LIC 39(03):301. doi:10.1017/S0024282907006664

    Article  Google Scholar 

  • Hauck M, Jürgens SR, Huneck S, Leuschner CH (2009) High acidity tolerance in lichens with fumarprotocetraric, perlatolic or thamnolic acids is correlated with low pKa1 values of these lichen substances. Environ Pollut 157(10):2776–2780. doi:10.1016/j.envpol.2009.04.022

    Article  CAS  PubMed  Google Scholar 

  • Hawksworth DL, Ainsworth GC (1995) Ainsworth and Bisby’s dictionary of the fungi, 8th edn. CAB International, Wallingford

    Google Scholar 

  • Heilman AS, Sharp AJ (1963) A probable antibioticeffect of some lichens on bryophytes. In. Rev Bryol Lichénol 32:215

    Google Scholar 

  • Henningsson B, Lundstrom H (1970) The influence of lichens, lichen extracts and usnic acid on wood destroying fungi. Material und Organismen 5(1):19–31

    Google Scholar 

  • Jin J, Rao Y, Bian X, Zeng A, Yang G (2013) Solubility of (+)-Usnic Acid in Water, Ethanol, Acetone, Ethyl Acetate and n-Hexane. Journal of Solution Chemistry 45(5):1018–1027

  • Inoue Y, Crofts AR, Govindjee, Murata N, Renger G, Satoh K (1983) The oxygen evolving system of photosynthesis. Academic Press, Tokyo, pp 351–356

    Book  Google Scholar 

  • Inoue H, Noguchi M, Kubo K (1987) Site of inhibition of usnic acid at oxidizing side of photosystem 2 of spinach chloroplasts. Photosynthetica 21:88–90

  • Lang D, Zimmer AD, Rensing SA, Reski R (2008) Exploring plant biodiversity. The Physcomitrella genome and beyond. In. Trends Plant Sci 13(10):542–549. doi:10.1016/j.tplants.2008.07.002

    Article  CAS  PubMed  Google Scholar 

  • Lascève G, Gaugain F (1990) Effects of Usnic Acid on Sunflower and Maize Plantlets. J Plant Physiol 136(6):723–727. doi:10.1016/S0176-1617(11)81352-0

    Article  Google Scholar 

  • Lawrey JD (1977) Inhibition of Moss Spore Germination by Acetone Extracts of Terricolous Cladonia Species. In. Bull Torrey Botanical Club 104(1):49. doi:10.2307/2484664

    Article  Google Scholar 

  • Lawrey JD (1995) The chemical ecology of lichen mycoparasites. A review. In. Can J Bot 73(S1):603–608. doi:10.1139/b95-301

    Article  Google Scholar 

  • Lawrey JD (2000) Chemical Interactions Between Two Lichen-degrading Fungi. J Chem Ecol 26(8):1821–1831. doi:10.1023/A:1005540622612

    Article  CAS  Google Scholar 

  • Leflaive J, Ten-Hage L (2007) Algal and cyanobacterial secondary metabolites in freshwaters. A comparison of allelopathic compounds and toxins. In. Freshwater Biol 52(2):199–214. doi:10.1111/j.1365-2427.2006.01689.x

    Article  CAS  Google Scholar 

  • Legaz ME, Monsó MA, Vicente C (2004) Harmful effects of epiphytic lichens on trees. In. Recent Res Dev Agronomy Horticulture 1:1–10

    Google Scholar 

  • Lokajová V, Bačkorová M, Bačkor M (2014) Allelopathic effects of lichen secondary metabolites and their naturally occurring mixtures on cultures of aposymbiotically grown lichen photobiont Trebouxia erici (Chlorophyta). In. S Afr J Bot 93:86–91. doi:10.1016/j.sajb.2014.03.015

    Article  Google Scholar 

  • Macías FA, Molinillo JMG, Varela RM, Galindo JCG (2007) Allelopathy—a natural alternative for weed control. In. Pest Manag Sci 63(4):327–348. doi:10.1002/ps.1342

    Article  PubMed  Google Scholar 

  • Marques J (2013) A framework for assessing the vulnerability of schist surfaces to lichen-induced weathering in the Upper Douro region (NE Portugal). Rubim Almeida y GracielaPaz, Directores

    Google Scholar 

  • Molisch H (1938) Der Einfluss einer Pflanze auf die Andere, Allelopathie. In. Nature 141(3568):493. doi:10.1038/141493a0

    Article  Google Scholar 

  • Molnár K, Farkas E (2010) Current Results on Biological Activities of Lichen Secondary Metabolites. A Review. In. Zeitschrift für Naturforschung C 65:3–4. doi:10.1515/znc-2010-3-401

    Article  Google Scholar 

  • Orange A, James PW, White FJ (2001) Microchemical methods for the identification of lichens. British Lichen Society, London

    Google Scholar 

  • Poelt J (1985) Über auf Moosen parasitierende Flechten. In. Sydowia, Annales Mycologici SerII 38:241–254

    Google Scholar 

  • Ranković B (2015) Lichen Secondary Metabolites. Springer International Publishing, Cham

    Book  Google Scholar 

  • Reigosa MJ, Sánchez-Moreiras AGL (1999) Ecophysiological Approach in Allelopathy. In. Crit Rev Plant Sci 5:577–608. doi:10.1080/07352689991309405

    Article  Google Scholar 

  • Rensing SA, Lang D, Zimmer AD, Terry A, Salamov A, Shapiro H et al (2008) The Physcomitrella Genome Reveals Evolutionary Insights into the Conquest of Land by Plants. Science 319(5859):64–69. doi:10.1126/science.1150646

    Article  CAS  PubMed  Google Scholar 

  • Romagni JG, Meazza G, Nanayakkara NPD, Dayan FE (2000) The phytotoxic lichen metabolite, usnic acid, is a potent inhibitor of plant p -hydroxyphenylpyruvate dioxygenase. FEBS Lett 480(2-3):301–305. doi:10.1016/S0014-5793(00)01907-4

    Article  CAS  PubMed  Google Scholar 

  • Sassmann S, Adlassnig W, Puschenreiter M, Cadenas EJP, Leyvas M, Lichtscheidl I, Lang I (2015) Free metal ion availability is a major factor for tolerance and growth in Physcomitrella patens. In. Environ Exp Bot 110:1–10. doi:10.1016/j.envexpbot.2014.08.010

    Article  CAS  Google Scholar 

  • Sedia EG, Ehrenfeld JG (2003) Lichens and mosses promote alternate stable plant communities in the New Jersey Pinelands. Oikos 100(3):447–458. doi:10.1034/j.1600-0706.2003.12058.x

    Article  Google Scholar 

  • Solhaug KA, Gauslaa Y (1996) Parietin, a photoprotective secondary product of the lichen Xanthoria parietina. Oecologia 108(3):412–418. doi:10.1007/BF00333715

    Article  PubMed  Google Scholar 

  • Solhaug KA, Lind M, Nybakken L, Gauslaa Y (2009) Possible functional roles of cortical depsides and medullary depsidones in the foliose lichen Hypogymnia physodes. In. Flora - Morphol Distrib Funct Ecol Plants 204(1):40–48. doi:10.1016/j.flora.2007.12.002

    Article  Google Scholar 

  • Vavasseur A, Gautier H, Thibaud MCH, Lascève G (1991) Effects of Usnic Acid on the Oxygen Exchange Properties of Mesophyll Cell Protoplasts from Commelina communis L. J Plant Physiol 139(1):90–94. doi:10.1016/S0176-1617(11)80171-9

    Article  CAS  Google Scholar 

  • Whiton JC, Lawrey JD (1984) Inhibition of crustose lichen spore germination by lichen acids. In. Bryologist 87:42–43

    Article  Google Scholar 

Download references

Acknowledgments

We thank Irene Lichtscheidl for providing the imaging equipment at Core Facility Cell Imaging and Ultrastructure Research and Stephan Manhalter for critical reading and reviewing this manuscript. This work was supported by OeAD-Ernst Mach grant (ICM/2015/02049) to MG and the Slovak Grant Agency (VVGS/PF/2016/72615) to MG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Goga.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Handling Editor: Peter Nick

Electronic Supplementary Materials

Below is the link to the electronic supplementary material.

ESM 1

Supplemental data respective table as supplemental data. Red colored numbers represent significant differences in effect size. (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goga, M., Antreich, S.J., Bačkor, M. et al. Lichen secondary metabolites affect growth of Physcomitrella patens by allelopathy. Protoplasma 254, 1307–1315 (2017). https://doi.org/10.1007/s00709-016-1022-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-016-1022-7

Keywords

Navigation