Skip to main content
Log in

Cardiac Glycosides: Distribution, Properties and Specificity of Formation in Plant Cell and Organ Cultures In Vitro

  • REVIEWS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Secondary metabolism (the formation of substances of specialized metabolism) is one of the distinctive specificities of the plant organism. Data on complete sequences of plant genomes indicate that from 15 to 25% of all genes are involved in this process (the biosynthesis of enzymes, transporters and transfactors serving it), while many aspects of secondary metabolism, including its physiological functions, are still unclear. The use of plant cell and organ cultures is a promising approach to solving fundamental and applied problems in specialized metabolism. The mechanisms of formation of secondary metabolites in plant systems in vitro with different levels of cell differentiation can differ significantly from those in an intact plant, which, when comparing these biological systems, can be effectively used to study the principles of regulation, organization and functioning of secondary metabolism. To date, more than 100 000 compounds of specialized metabolism (alkaloids, isoprenoids, phenolic compounds and a number of “minor” groups of secondary metabolites) are known, which, as a rule, are biologically active substances. This fact determines their practical significance and wide application in medicine: today, about a third of all medicinal substances are of plant origin. An acute shortage of medicinal plant materials makes the use of plant cell and organ cultures a very promising source of biologically active substances. Cardiac glycosides are one of the most important groups of secondary metabolites, which have been used in medicine for the treatment of cardiac diseases for more than two centuries. Interest in them is now growing significantly due to the discovery of new properties, including antiviral and antitumor activity. The review analyzes the main results of works devoted to the study of the formation of cardiac glycosides in plant cell and organ cultures producing these compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Wink, M., Introduction: biochemistry, physiology and ecological functions of secondary metabolites, Annu. Plant Rev., 2010, vol. 40, p. 1. https://doi.org/10.1002/9781444320503.ch1

    Article  CAS  Google Scholar 

  2. Nosov, A.M., Popova, E.V., and Kochkin, D.V., Isoprenoid production via plant cell cultures: biosynthesis, accumulation and scaling-up to bioreactors, in Production of Biomass and Bioactive Compounds Using Bioreactor Technology, Paek, K.Y., Murthy, H.N., and Zhong, J.J., Eds., Dordrecht: Springer-Verlag, 2014, p. 563. https://doi.org/10.1007/978-94-017-9223-3_23

  3. Nosov, A.M., Application of cell technologies for production of plant-derived bioactive substances of plant origin, Appl. Biochem. Microbiol., 2012, vol. 48, p. 609. https://doi.org/10.1134/S000368381107009X

    Article  CAS  Google Scholar 

  4. Khotim, E.N., Zhigal’tsov, A.M., and Kumara, A., Some aspects of modern herbal medicine, Zh. Grodn. Gos. Med. Univ., 2016, vol. 3, p. 136.

    Google Scholar 

  5. Sambukova, T.V., Ovchinnikov, B.V., Ganapolskii, V.P., Yatmanov, A.N., and Shabanov, P.D., Prospects for phytopreparations (botanicals) use in modern pharmacology, Reviews on Clinical Pharmacology and Drug Therapy, 2017, vol. 15, p. 56.

    Article  Google Scholar 

  6. Brahmkshatriya, P.P. and Brahmkshatriya, P.S., Terpenes: chemistry, biological role, and therapeutic applications, in Natural Products: Phytochemistry, Botany and Metabolism of Alkaloids, Phenolics and Terpenes, Ramawat, K.G. and Merillon, J.M., Eds., Heidelberg: Springer-Verlag, 2013, p. 2665. https://doi.org/10.1007/978-3-642-22144-6_120

  7. Kreis, W. and Muller-Uri, F., Biochemistry of sterols, cardiac glycosides, brassinosteroids, phytoecdysteroids and steroid saponins, Annu. Plant Rev., 2010, vol. 40, p. 304. https://doi.org/10.1002/9781444320503.ch6

    Article  CAS  Google Scholar 

  8. Matyushin, A.I., Biokhimicheskaya farmakologiya serdechnykh glikozidov (Biochemical pharmacology of cardiac glycosides), in Biokhimicheskaya farmakologiya (Biochemical Pharmacology), Sergeev, P.V. and Shimanovskii, N.L., Eds., Moscow: Med. Inf. Agentstvo, 2010, p. 358.

  9. Velichko, N.A. and Smol’nikova, Ya.V., Poluchenie serdechnykh glikozidov iz kletochnoi kul’tury Digitalis purpurea L. (Obtaining of Cardiac Glycosides from the Cell Culture of Digitalis purpurea L.), Krasnoyarsk: Krasnoyarsk. Gos. Agrar. Univ., 2014.

    Google Scholar 

  10. Krishna, A.B., Manikyam, H.K., Sharma, V.K., and Sharma, N., Plant cardenolides in therapeutics, Int. J. Indigenous Med. Plants, 2015, vol. 48, p. 1871.

    Google Scholar 

  11. Verma, S.K., Das, A.K., Cingoz, G.S., and Gurel, E., In vitro culture of Digitalis L. (foxglove) and the production of cardenolides: an up-to-date review, Ind. Crops Prod., 2016, vol. 94, p. 20. https://doi.org/10.1016/j.indcrop.2016.08.031

    Article  CAS  Google Scholar 

  12. Kreis, W., The foxgloves (Digitalis) revisited, Planta Med., 2017, vol. 83, p. 962. https://doi.org/10.1055/s-0043-111240

    Article  CAS  PubMed  Google Scholar 

  13. Clemente, E.S., Muller-Uri, F., Nebauer, S.G., Segura, J., Kreis, W., and Arrillaga, I., Digitalis, in Wild Crop Relatives: Genomic and Breeding Resources. Plantation and Ornamental Crops, Kole, C., Ed., Berlin: Springer-Verlag, 2011, p. 73. https://doi.org/10.1007/978-3-642-21201-7_5

  14. Kreis, W. and Muller-Uri, F., Cardenolide aglycone formation in Digitalis, in Isoprenoid Synthesis in Plants and Microorganisms: New Concepts and Experimental Approaches. New Concepts and Experimental Approaches, Bach, T.J. and Rohmer, M., Eds., New York: Springer-Verlag, 2013, p. 425. https://doi.org/10.1007/978-1-4614-4063-5_29

  15. Steyn, P.S. and van Heerden, F.R., Bufadienolides of plant and animal origin, Nat. Prod. Rep., 1998, vol. 15, p. 397. https://doi.org/10.1039/A815397Y

    Article  CAS  PubMed  Google Scholar 

  16. Fedorova, O.V., Korostovtseva, L.S., Shapiro, J.I., and Bagrov, A.Y., Endogenous cardiotonic steroids: clinical perspective, Arterial’naya Gipertenziya, 2008, vol. 14, p. 220. https://doi.org/10.18705/1607-419X-2008-14-3-220-232

    Article  Google Scholar 

  17. Prassas, I. and Diamandis, E.P., Novel therapeutic applications of cardiac glycosides, Nat. Rev. Drug Discovery, 2008, vol. 7, p. 926. https://doi.org/10.1038/nrd2682

    Article  CAS  PubMed  Google Scholar 

  18. Melero, C.P., Medarde, M., and Feliciano, A.S., A short review on cardiotonic steroids and their aminoguanidine analogues, Molecules, 2000, vol. 5, p. 51. https://doi.org/10.3390/50100051

    Article  CAS  Google Scholar 

  19. Ahmed, A., Pitt, B., Rahimtoola, S.H., Waagstein, F., White, M., Love, T.E., and Braunwald, E., Effects of digoxin at low serum concentrations on mortality and hospitalization in heart failure: a propensity matched study of the DIG trial, Int. J. Cardiol., 2008, vol. 123, p. 138. https://doi.org/10.1016/j.ijcard.2006.12.001

    Article  PubMed  Google Scholar 

  20. Shiratori, O., Growth inhibitory effect of cardiac glycosides and aglycones on neoplastic cells: in vitro and in vivo studies, Jpn. J. Cancer Res., 1967, vol. 58, p. 521.

    CAS  Google Scholar 

  21. Mijatovic, T., Quaquebeke, E.V., Delest, B., Debeir, O., Darro, F., and Kiss, R., Cardiotonic steroids on the road to anti-cancer therapy, Biochem. Biophys. Acta, Rev. Cancer, 2007, vol. 1776, p. 32. https://doi.org/10.1016/j.bbcan.2007.06.002

    Article  CAS  Google Scholar 

  22. Stenkvist, B., Bengtssonv E., Eriksson, O., Holmquist, J., Nordin, B., and Westman-Naeser, S., Cardiac glycosides and breast cancer, Lancet, 1979, vol. 10, p. 563. https://doi.org/10.1016/s0140-6736(79)90996-6

    Article  Google Scholar 

  23. Ueda, J.Y., Tezuka, Y., Banskota, A.H., Tran, Q.L., Tran, Q.K., Saiki, I., and Kadota, S., Antiproliferative activity of cardenolides isolated from Streptocaulon juventas, Biol. Pharm. Bull., 2003, vol. 26, p. 1431. https://doi.org/10.1248/bpb.26.1431

    Article  CAS  PubMed  Google Scholar 

  24. Lopez-Lazaro, M., Pastor, N., Azrak, S.S., Ayuso, M.J., Austin, C.A., and Cortes, F., Digitoxin inhibits the growth of cancer cell lines at concentrations commonly found in cardiac patients, J. Nat. Prod., 2005, vol. 68, p. 1642. https://doi.org/10.1021/np050226l

    Article  CAS  PubMed  Google Scholar 

  25. Hallbook, H., Felth, J., Eriksson, A., Fryknas, M., Bohlin, L., Larsson, R., and Gullbo, J., Ex vivo activity of cardiac glycosides in acute leukaemia, PLoS One, 2011, vol. 6, p. e15718. https://doi.org/10.1371/journal.pone.0015718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fujino, T., Kuroda, M., Matsuo, Y., Kubo, S., Tamura, C., Sakamoto, N., Mimaki, Y., Makio, Y., and Hayakawa, M., Cardenolide glycosides from the seeds of Digitalis purpurea exhibit carcinoma-specific cytotoxicity toward renal adenocarcinoma and hepatocellular carcinoma cells, Biosci. Biotechnol. Biochem., 2015, vol. 79, p. 177. https://doi.org/10.1080/09168451.2014.975183

    Article  CAS  PubMed  Google Scholar 

  27. Li, J., Zelenin, S., Aperia, A., and Aizman, O., Low doses of ouabain protect from serum deprivation-triggered apoptosis and stimulate kidney cell proliferation via activation of NF-κB, J. Am. Soc. Nephrol., 2006, vol. 17, p. 1848. https://doi.org/10.1681/ASN.2005080894

    Article  CAS  PubMed  Google Scholar 

  28. Wang, J.K.T., Portbury, S., Thomas, M.B., Barney, S., Ricca, D.J., Morris, D.L., Warner, D.S., and Lo, D.C., Cardiac glycosides provide neuroprotection against ischemic stroke: discovery by a brain slice-based compound screening platform, Proc. Natl. Acad. Sci. U.S.A., 2006, vol. 103, p. 10461. https://doi.org/10.1073/pnas.0600930103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Verheye-Dua, F.A. and Bohm, L., Influence of ouabain on cell inactivation by irradiation, Strahlenther. Onkol., 1996, vol. 172, p. 156.

    CAS  PubMed  Google Scholar 

  30. Verheye-Dua, F.A. and Bohm, L. Na+,K+-ATPase inhibitor, ouabain accentuates irradiation damage in human tumour cell lines, Radiat. Oncol. Invest., 1998, vol. 6, p. 109. https://doi.org/10.1002/(SICI)1520-6823(1998)6:3<109::AID-ROI1>3.0.CO;2-1

    Article  CAS  Google Scholar 

  31. Pathak, S., Multani, A.S., Narayan, S., Kumar, V., and Newman, R.A., AnvirzelTM, an extract of Nerium oleander, induces cell death in human but not murine cancer cells, Anti-Cancer Drugs, 2000, vol. 11, p. 455. https://doi.org/10.1097/00001813-200007000-00006

    Article  CAS  PubMed  Google Scholar 

  32. Slingerland, M., Cerella, C., Guchelaar, H.J., Diederich, M., and Gelderblom, H., Cardiac glycosides in cancer therapy: from preclinical investigations towards clinical trials, Invest. New Drugs, 2013, vol. 31, p. 1087. https://doi.org/10.1007/s10637-013-9984-1

    Article  CAS  PubMed  Google Scholar 

  33. Pan, Y., Rhea, P., Tan, L., Cartwright, C., Lee, H.J., Ravoori, M.K., Addington, C., Gagea, M., Kundra, V., Kim, S.J., Newman, R.A., and Yang, P., PBI-05204, a supercritical CO2 extract of Nerium oleander, inhibits growth of human pancreatic cancer via targeting the PI3K/mTOR pathway, Invest. New Drugs, 2015, vol. 33, p. 271. https://doi.org/10.1007/s10637-014-0190-6

    Article  CAS  PubMed  Google Scholar 

  34. Su, C.T., Hsu, J.T.A., Hsieh, H.P., Lin, P.H., Chen, T.C., Kao, C.L., Lee, C.N., and Chang, S.Y., Anti-HSV activity of digitoxin and its possible mechanisms, Antiviral Res., 2008, vol. 79, p. 62. https://doi.org/10.1016/j.antiviral.2008.01.156

    Article  CAS  PubMed  Google Scholar 

  35. Singh, S., Shenoy, S., Nehete, P.N., Yang, P., Nehete, B., Fontenot, D., Yang, G., Newman, R.A., and Sastry, K.J., Nerium oleander derived cardiac glycoside oleandrin is a novel inhibitor of HIV infectivity, Fitoterapia, 2013, vol. 84, p. 32. https://doi.org/10.1016/j.fitote.2012.10.017

    Article  CAS  PubMed  Google Scholar 

  36. Cai, H., Wang, H.Y.L., Venkatadri, R., Fu, D.X., Forman, M., Bajaj, S.O., Li, H., O’Doherty, G.A., and Arav-Boger, R., Digitoxin analogues with improved anticytomegalovirus activity, ACS Med. Chem. Lett., 2014, vol. 5, p. 395. https://doi.org/10.1021/ml400529q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hanrahan, J.W., Sampson, H.M., and Thomas, D.Y., Novel pharmacological strategies to treat cystic fibrosis, Trends Pharmacol. Sci., 2013, vol. 34, p. 119. https://doi.org/10.1016/j.tips.2012.11.006

    Article  CAS  PubMed  Google Scholar 

  38. Pauli G.F., Friesen J.B., Godecke T., Farnsworth N.R., and Glodny B., Occurrence of progesterone and related animal steroids in two higher plants, J. Nat. Prod., 2010, vol. 73, p. 338. https://doi.org/10.1021/np9007415

    Article  CAS  PubMed  Google Scholar 

  39. Makarevich, I.F. and Kovalev, S.V., Cardiac glycosides from Strophanthus kombe, Chem. Nat. Compd., 2006, vol. 42, p. 189. https://doi.org/10.1007/s10600-006-0075-9

    Article  CAS  Google Scholar 

  40. Evans, W.C. and Evans, D., Saponins, cardioactive drugs and other steroids, in Trease and Evans’ Pharmacognosy, Evans, W.C., Ed., 16th ed., Edinburgh: Saunders, 2009, p. 304. https://doi.org/10.1016/B978-0-7020-2933-2.00023-X

  41. Kumar, A., De, T., Mishra, A., and Mishra, A.K., Oleandrin: A cardiac glycosides with potent cytotoxicity, Pharmacogn. Rev., 2013, vol. 7, p. 131. https://doi.org/10.4103/0973-7847.120512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Taha, H.S., Farag, S.H., Shams, K.A., Abdel-Azim, N.S., and Seif El-Nasr, M.M., In vivo and in vitro studies on Thevetia species growing in Egypt II. Establishment of in vitro tissue culture system and production of cardiac glycosides, J. Am. Sci., 2011, vol. 7, p. 1.

    Google Scholar 

  43. Cheung, H.T.A., Watson, T.R., Seiber, J.N., and Nelson, C., 7β,8β-epoxycardenolide glycosides of Asclepias eriocarpa, J. Chem. Soc., Perkin Trans. 1, 1980, p. 2169. https://doi.org/10.1039/P19800002169

  44. Cheung, H.T.A., Chiu, F.C.K., Watson, T.R., and Wells, R.J., Cardenolide glycosides of the Asclepiadaceae. New glycosides from Asclepias fruticosa and the stereochemistry of uscharin, voruscharin and calotoxin, J. Chem. Soc., Perkin Trans. 1, 1983, p. 2827. https://doi.org/10.1039/P19830002827

  45. Abe, F., Mori, Y., and Yamauchi, T., Cardenolide glycosides from the seeds of Asclepias curassavica, Chem. Pharm. Bull., 1992, vol. 40, p. 2917. https://doi.org/10.1248/cpb.40.2917

    Article  CAS  Google Scholar 

  46. Kolodziejczyk-Czepas, J. and Stochmal, A., Bufadienolides of Kalanchoe species: an overview of chemical structure, biological activity and prospects for pharmacological use, Phytochem. Rev., 2017, vol. 16, p. 1155. https://doi.org/10.1007/s11101-017-9525-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yokosuka, A., Inomata, M., Yoshizawa, Y., Iguchi, T., and Mimaki, Y., Bufadienolides and ecdysteroids from the whole plants of Helleborus niger and their cytotoxicity, J. Nat. Med., 2021, vol. 75, p. 393. https://doi.org/10.1007/s11418-021-01481-6

    Article  CAS  PubMed  Google Scholar 

  48. Chik, W.I., Zhu, L., Fan, L.L., Yi, T., Zhu, G.Y., Gou, X.J., Tang, Y.N., Xu, J., Yeung, W.P., Zhao, Z.Z., Yu, Z.L., and Chen, H.B., Saussurea involucrata: a review of the botany, phytochemistry and ethnopharmacology of a rare traditional herbal medicine, J. Ethnopharmacol., 2015, vol. 172, p. 44. https://doi.org/10.1016/j.jep.2015.06.033

    Article  CAS  PubMed  Google Scholar 

  49. Agrawal, A.A., Petschenka, G., Bingham, R.A., Weber, M.G., and Rasmann, S., Toxic cardenolides: chemical ecology and coevolution of specialized plant–herbivore interactions, New Phytol., 2012, vol. 194, p. 28. https://doi.org/10.1111/j.1469-8137.2011.04049.x

    Article  CAS  PubMed  Google Scholar 

  50. Rucker, W., Digitalis spp.: in vitro culture, regeneration, and the production of cardenolides and other secondary products, in Medicinal and Aromatic Plants I, Biotechnol. Agric. For., vol. 4, Bajaj, Y.P.S., Ed., Heidelberg: Springer-Verlag, 1988, p. 388. https://doi.org/10.1007/978-3-642-73026-9_21

  51. Hagimori, M., Matsumoto, T., and Kisaki, T., Studies on the production of Digitalis cardenolides by plant tissue culture I. Determination of digitoxin and digoxin contents in first and second passage calli and organ re-differentiating calli of several Digitalis species by radioimmunoassay, Plant Cell Physiol., 1980, vol. 21, p. 1391. https://doi.org/10.1093/pcp/21.8.1391

    Article  CAS  PubMed  Google Scholar 

  52. Nover, L., Luckner, M., Tewes, A., Garve, R., and Vogel, E., Cell specialization and cardiac glycoside formation in cell cultures of Digitalis species, Acta Hortic. (Amsterdam), 1980, vol. 96, p. 65. https://doi.org/10.17660/ActaHortic.1980.96.3

    Article  Google Scholar 

  53. Kuberski, Ch., Scheibner, H., Steup, C., Diettrich, B., and Luckner, M., Embryogenesis and cardenolide formation in tissue cultures of Digitalis lanata, Phytochemistry, 1984, vol. 23, p. 1407. https://doi.org/10.1016/S0031-9422(00)80475-6

    Article  CAS  Google Scholar 

  54. Luckner, M. and Diettrich, B., Formation of cardenolides in cell and organ cultures of Digitalis lanata, in Primary and Secondary Metabolism of Plant Cell Cultures, Neumann, K.-H., Barz, W., and Reinhard, E., Eds., Heidelberg: Springer-Verlag, 1985, p. 154. https://doi.org/10.1007/978-3-642-70717-9_15

  55. Seidel, S. and Reinhard, E. Major cardenolide glycosides in embryogenic suspension cultures of Digitalis lanata, Planta Med., 1987, vol. 53, p. 308. https://doi.org/10.1055/s-2006-962722

    Article  CAS  PubMed  Google Scholar 

  56. Hagimori, M., Matsumoto, T., and Obi, Y., Studies on the production of Digitalis cardenolides by plant tissue culture II. Effect of light and plant growth substances on digitoxin formation by undifferentiated cells and shoot-forming cultures of Digitalis purpurea L. grown in liquid media, Plant Physiol., 1982, vol. 69, p. 653. https://doi.org/10.1104/pp.69.3.653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lui, J. and Staba, E., Effects of age and growth regulators on serially propagated Digitalis lanata leaf and root cultures, Planta Med., 1981, vol. 41, p. 90. https://doi.org/10.1055/s-2007-971682

    Article  CAS  PubMed  Google Scholar 

  58. Lui, J.H. and Staba, E.J., Effects of precursors on serially propagated Digitalis lanata leaf and root cultures, Phytochemistry, 1979, vol. 18, p. 1913. https://doi.org/10.1016/S0031-9422(00)82701-6

    Article  CAS  Google Scholar 

  59. Hirotani, M. and Furuya, T., Restoration of cardenolide-synthesis in redifferentiated shoots from callus cultures of Digitalis purpurea, Phytochemistry, 1977, vol. 16, p. 610. https://doi.org/10.1016/0031-9422(77)80032-0

    Article  CAS  Google Scholar 

  60. Spieler, H., Alfermann, A.W., and Reinhard, E., Biotransformation of β-methyldigitoxin by cell cultures of Digitalis lanata in airlift and stirred tank reactors, Appl. Microbiol. Biotechnol., 1985, vol. 23, p. 1. https://doi.org/10.1007/BF02660109

    Article  CAS  Google Scholar 

  61. Kreis, W. and Reinhard, E., 12β-Hydroxylation of digitoxin by suspension-cultured Digitalis lanata cells. Production of deacetyllanatoside C using a two-stage culture method, Planta Med., 1988, vol. 54, p. 143. https://doi.org/10.1055/s-2006-962373

    Article  CAS  PubMed  Google Scholar 

  62. Kreis, W. and Reinhard, E., 12β-Hydroxylation of digitoxin by suspension-cultured Digitalis lanata cells: production of digoxin in 20-1itre and 300-1itre air-lift bioreactors, J. Biotechnol., 1992, vol. 26, p. 257. https://doi.org/10.1016/0168-1656(92)90011-w

    Article  CAS  PubMed  Google Scholar 

  63. Bonfill, M., Palazon, J., Cusido, R.M., Pinol, M.T., and Morales, C., Effect of auxin and phenobarbital on the ultrastructure and digitoxin content in Digitalis purpurea tissue culture, Can. J. Bot., 1996, vol. 74, p. 378. https://doi.org/10.1139/b96-047

    Article  CAS  Google Scholar 

  64. Ohlsson, A.B. and Bjork, L., Effects of gibberellic acid on cardenolide accumulation by Digitalis lanata tissue cultures grown in light and darkness, J. Plant Physiol., 1988, vol. 133, p. 535.

    Article  CAS  Google Scholar 

  65. Cingoz, G.S. and Gurel, E., Effects of salicylic acid on thermotolerance and cardenolide accumulation under high temperature stress in Digitalis trojana Ivanina, Plant Physiol. Biochem., 2016, vol. 105, p. 145. https://doi.org/10.1016/j.plaphy.2016.04.023

    Article  CAS  PubMed  Google Scholar 

  66. Corchete, M.P., Jimenez, M.A., Moran, M., Cacho, M., and Fernandez-Tarrago, J., Effect of calcium, manganese and lithium on growth and cardenolide content in cell suspension cultures of Digitalis thapsi L., Plant Cell Rep., 1991, vol. 10, p. 394. https://doi.org/10.1007/BF00232609

    Article  CAS  PubMed  Google Scholar 

  67. Cacho, M., Moran, M., Fernandez-Tarrago, J., and Corchete, P., Calcium restriction induces cardenolide accumulation in cell suspension cultures of Digitalis thapsi L., Plant Cell Rep., 1995, vol. 14, p. 786. https://doi.org/10.1007/BF00232923

    Article  CAS  PubMed  Google Scholar 

  68. Paranhos, A., Fernandez-Tarrago, J., and Corchete, P., Relationship between active oxygen species and cardenolide production in cell cultures of Digitalis thapsi: effect of calcium restriction, New Phytol., 1999, vol. 141, p. 51. https://doi.org/10.1046/j.1469-8137.1999.00317.x

    Article  CAS  Google Scholar 

  69. Sahin, G., Verma, S.K., and Gurel, E., Calcium and magnesium elimination enhances accumulation of cardenolides in callus cultures of endemic Digitalis species of Turkey, Plant Physiol. Biochem., 2013, vol. 73, p. 139. https://doi.org/10.1016/j.plaphy.2013.09.007

    Article  CAS  PubMed  Google Scholar 

  70. Ohlsson, A.B. and Berglund, T., Effects of high MnS-O4 levels on cardenolide accumulation by Digitalis lanata tissue cultures in light and darkness, J. Plant Physiol., 1989, vol. 135, p. 505.

    Article  CAS  Google Scholar 

  71. Cingoz, G.S., Verma, S.K., and Gurel, E., Hydrogen peroxide-induced antioxidant activities and cardiotonic glycoside accumulation in callus cultures of endemic Digitalis species, Plant Physiol. Biochem., 2014, vol. 82, p. 89. https://doi.org/10.1016/j.plaphy.2014.05.008

    Article  CAS  PubMed  Google Scholar 

  72. Furuya, T. and Kojima, H., 4-Hydroxydigitolutein, a new anthraquinone from callus tissue of Digitalis lanata, Phytochemistry, 1971, vol. 10, p. 1607. https://doi.org/10.1016/0031-9422(71)85033-1

    Article  CAS  Google Scholar 

  73. Furuya, T., Kojima, H., and Katsuta, T., 3-Methylpurpurin and other anthraquinones from callus tissue of Digitalis lanata, Phytochemistry, 1972, vol. 11, p. 1073. https://doi.org/10.1016/S0031-9422(00)88455-1

    Article  CAS  Google Scholar 

  74. Matsumoto, M., Koga, S., Shoyama, Y., and Nishioka, I., Phenolic glycoside composition of leaves and callus cultures of Digitalis purpurea, Phytochemistry, 1987, vol. 26, p. 3225. https://doi.org/10.1016/S0031-9422(00)82474-7

    Article  CAS  Google Scholar 

  75. Furuya, T., Kawaguchi, K., and Hirotani, M., Biotransformation of digitoxigenin by cell suspension cultures of Strophanthus gratus, Phytochemistry, 1988, vol. 27, p. 2129. https://doi.org/10.1016/0031-9422(88)80110-9

    Article  CAS  Google Scholar 

  76. Kawaguchi, K., Hirotani, M., and Furuya, T., Biotransformation of digitoxigenin by cell suspension cultures of Strophanthus amboensis, Phytochemistry, 1988, vol. 27, p. 3475. https://doi.org/10.1016/0031-9422(88)80751-9

    Article  CAS  Google Scholar 

  77. Kawaguchi, K., Hirotani, M., and Furuya, T., Biotransformation of digitoxigenin by cell suspension cultures of Strophanthus intermedius, Phytochemistry, 1989, vol. 28, p. 1093. https://doi.org/10.1016/0031-9422(89)80190-6

    Article  CAS  Google Scholar 

  78. Kawaguchi, K., Hirotani, M., and Furuya, T., Biotransformation of digitoxigenin by cell suspension cultures of Strophanthus divaricatus, Phytochemistry, 1991, vol. 30, p. 1503. https://doi.org/10.1016/0031-9422(91)84197-Z

    Article  CAS  Google Scholar 

  79. Paper, D.H. and Franz, G., Biotransformation of 5βH-pregnan-3βol-20-one and cardenolides in cell suspension cultures of Nerium oleander L., Plant Cell Rep., 1990, vol. 8, p. 651. https://doi.org/10.1007/BF00269985

    Article  CAS  PubMed  Google Scholar 

  80. Chmeleva, S.I., Bugara, A.M., Omel’chenko, A.V., and Yakimova, O.V., Getting callus cultures of ordinary oleander (Nerium oleander L.) and analysis of cardiac glycosides on the content, Uch. Zap. Tavricheskogo Nats. Univ. im. V.I. Vernadskogo, Series “Biology, chemistry”, 2009, vol. 22, p. 145.

    Google Scholar 

  81. Ibrahim, A., Khalifa, S., Khafagi, I., Youssef, D., Khan, I., and Mesbah, M., Enhancement of oleandrin production in suspension cultures of Nerium oleander by combined optimization of medium composition and substrate feeding, Plant Biosyst., 2009, vol. 143, p. 97. https://doi.org/10.1080/11263500802633683

    Article  Google Scholar 

  82. Hovhannisyan, N., Mkrumyan, M., Yesayan, A., Aroutiounian, R., Newman, R.A., Grigoryan, R., Sarkisyan, N., and Gasparyan, G., Callus culture of oleander retains pharmacological activities of the plant, Nat. Prod. Indian J., 2011, vol. 7, p. 137.

    Google Scholar 

  83. Salama, I.M., Mohamed, H.M., and El-Megid, A., Reflex of oleandrin production and molecular changes on the Nerium oleander cell suspension culture under UV-A radiation stress effect, Egypt. J. Radiat. Sci. Appl., 2019, vol. 32, p. 117. https://doi.org/10.21608/ejrsa.2019.7166.1062

    Article  Google Scholar 

  84. Sen, G. and Datta, P.C., Dedifferentiation and loss of thevetin in Thevetia peruviana callus, Planta Med., 1981, vol. 41, p. 415. https://doi.org/10.1055/s-2007-971742

    Article  CAS  PubMed  Google Scholar 

  85. Dantas-Barros, A.M., Foulquier, M., Cosson, L., and Jacquin-Dubreuil, A., Cardenolide formation in cell suspension cultures of Thevetia peruviana (Pers.) K. Schum. (synonym Thevetia neriifolia Juss.), Nat. Prod. Lett., 1993, vol. 3, p. 37. https://doi.org/10.1080/10575639308043835

    Article  CAS  Google Scholar 

  86. Zabala, M.A., Angarita, M., Restrepo, J.M., Caicedo, L.A., and Perea, M., Elicitation with methyl-jasmonate stimulates peruvoside production in cell suspension cultures of Thevetia peruviana, In Vitro Cell. Dev. Biol.: Plant, 2010, vol. 46, p. 233. https://doi.org/10.1007/s11627-009-9249-z

    Article  CAS  Google Scholar 

  87. Doller, P.C. and Reinhard, E., Biotransformation of cardenolides. Comparative studies with cell cultures of Thevetia neriifolia and Digitalis lanata, Planta Med., 1979, vol. 37, p. 277.

    Google Scholar 

  88. Arias, J.P., Zapata, K., Rojano, B., and Arias, M., Effect of light wavelength on cell growth, content of phenolic compounds and antioxidant activity in cell suspension cultures of Thevetia peruviana, J. Photochem. Photobiol., B, 2016, vol. 163, p. 87. https://doi.org/10.1016/j.jphotobiol.2016.08.014

    Article  CAS  Google Scholar 

  89. Arias, J.P., Zapata, K., Rojano, B., Penuela, M., and Arias, M., Cardiac glycosides, phenolic compounds and antioxidant activity from plant cell suspension cultures of Thevetia peruviana, Rev. U.D.C.A Actual. Divulg. Cient., 2017, vol. 20, p. 353.

    Google Scholar 

  90. Mendoza, D., Arias, J.P., Cuaspud, O., and Arias, M., Phytochemical screening of callus and cell suspensions cultures of Thevetia peruviana, Braz. Arch. Biol. Technol., 2020, vol. 63, p. e20180735. https://doi.org/10.1590/1678-4324-2020180735

    Article  CAS  Google Scholar 

  91. El-Bakry, A.A., Ghazi, S.M., and Abdrabou, H.A.A., Production of cardiac glycosides from Calotropis procera by cell suspension cultures, J. Appl. Sci. Res., 2011, vol. 7, p. 1375.

    CAS  Google Scholar 

  92. Tripathi, P.K., Awasthi, S., Kanojiya, S., Tripathi, V., and Mishra, D.K., Callus culture and in vitro biosynthesis of cardiac glycosides from Calotropis gigantea (L.) Ait., In Vitro Cell. Dev. Biol.: Plant, 2013, vol. 49, p. 455. https://doi.org/10.1007/s11627-012-9481-9

    Article  CAS  Google Scholar 

  93. Venkateswara, R., Rao, K.S., and Vaidyanathan, C.S., Cryptosin—a new cardenolide in tissue culture and intact plants of Cryptolepis buchanani Roem. & Schult., Plant Cell Rep., 1987, vol. 6, p. 291. https://doi.org/10.1007/BF00272001

    Article  CAS  PubMed  Google Scholar 

  94. Hifnawy, M.S., El-Shanawany, M.A., Khalifa, M.M., Youssef, A.K., Bekhit, M.H., and Desoukey, S.Y., In vitro and in vivo cultivation of Pergularia tomentosa for cardenolides, IOSR J. Pharm. Biol. Sci., 2014, vol. 9, p. 40. https://doi.org/10.9790/3008-09214052

    Article  Google Scholar 

  95. Duskova, J., Sovova, M., Zackova, P., and Spurna, V., Tissue culture of crownvetch (Coronilla varia L.) and the production of cardenolide-like substances in vitro, Biol. Plant., 1987, vol. 29, p. 258. https://doi.org/10.1007/BF02892786

    Article  CAS  Google Scholar 

  96. Tofighi, Z., Ghazi saeidi, N., Hadjiakhoondi, A., and Yassa, N., Determination of cardiac glycosides and total phenols in different generations of Securigera securidaca suspension culture, Res. J. Pharmacogn., 2016, vol. 3, p. 25.

    CAS  Google Scholar 

  97. Kaul, B., Wells, P., and Staba, E.J., Production of cardio-active substances by plant tissue cultures and their screening for cardiovascular activity, J. Pharm. Pharmacol., 1967, vol. 19, p. 760. https://doi.org/10.1111/j.2042-7158.1967.tb08028.x

    Article  CAS  PubMed  Google Scholar 

  98. Shyr, S.E. and Staba, E.J., Examination of squill tissue cultures for bufadienolides and anthocyanins, Planta Med., 1976, vol. 29, p. 86. https://doi.org/10.1055/s-0028-1097633

    Article  CAS  PubMed  Google Scholar 

  99. Jha, S., Sahu, N.P., and Mahato, S.B., Callus induction, organogenesis and somatic embryogenesis in three chromosomal races of Urginea indica and production of bufadienolides, Plant Cell, Tissue Organ Cult., 1991, vol. 25, p. 85. https://doi.org/10.1007/BF00042178

    Article  Google Scholar 

  100. Reddy, A.S., Devi, P.S., and Kiran, S.R., In vitro cell culture of Charybdis congesta for enhanced production of secondary metabolites: proscillaridin A, scillaren A and scilliroside, Afr. J. Biotechnol., 2013, vol. 12, p. 1754. https://doi.org/10.5897/AJB2013.12103

    Article  CAS  Google Scholar 

  101. Daniel, D., Susal, C., Kopp, B., Opelz, G., and Terness, P., Apoptosis-mediated selective killing of malignant cells by cardiac steroids: maintenance of cytotoxicity and loss of cardiac activity of chemically modified derivatives, Int. Immunopharmacol., 2003, vol. 3, p. 1791. https://doi.org/10.1016/j.intimp.2003.08.004

    Article  CAS  PubMed  Google Scholar 

  102. Zhang, X., Ye, M., Dong, Y., Hu, H., Tao, S., Yin, J., and Guo, D., Biotransformation of bufadienolides by cell suspension cultures of Saussurea involucrata, Phytochemistry, 2011, vol. 72, p. 1779. https://doi.org/10.1016/j.phytochem.2011.05.004

    Article  CAS  PubMed  Google Scholar 

  103. Hilton, P.J., McKinnon, W., Gravett, E.C., Peron, J.M.R., Frampton, C.M., Nicholls, M.G., and Lord, G., Selective inhibition of the cellular sodium pump by emicymarin and 14β anhydroxy bufadienolides, Steroids, 2010, vol. 75, p. 1137. https://doi.org/10.1016/j.steroids.2010.07.010

    Article  CAS  PubMed  Google Scholar 

  104. Ye, M., Qu, G.Q., Guo, H.Z., and Guo, D.A., Novel cytotoxic bufadienolides derived from bufalin by microbial hydroxylation and their structure-activity relationships, J. Steroid Biochem. Mol. Biol., 2004, vol. 91, p. 87. https://doi.org/10.1016/j.jsbmb.2004.01.010

    Article  CAS  PubMed  Google Scholar 

  105. Ye, M., Han, J., An, D.G., Tu, G.Z., and Guo, D.A., New cytotoxic bufadienolides from the biotransformation of resibufogenin by Mucor polymorphosporus, Tetrahedron, 2005, vol. 61, p. 8947. https://doi.org/10.1016/j.tet.2005.07.012

    Article  CAS  Google Scholar 

  106. Ye, M., Ning, L., Zhan, J., Guo, H., and Guo, D., Biotransformation of cinobufagin by cell suspension cultures of Catharanthus roseus and Platycodon grandiflorum, J. Mol. Catal. B: Enzym., 2003, vol. 22, p. 89. https://doi.org/10.1016/S1381-1177(03)00011-0

    Article  CAS  Google Scholar 

  107. Ye, M., Dai, J., Guo, H., Cui, Y., and Guo, D., Glucosylation of cinobufagin by cultured suspension cells of Catharanthus roseus, Tetrahedron Lett., 2002, vol. 43, p. 8535. https://doi.org/10.1016/S0040-4039(02)02078-6

    Article  CAS  Google Scholar 

  108. Nisar, A., Mamat, A.S., Hatim, M.I., Aslam, M.S., and Ahmad, M.S., An updated review on Catharanthus roseus: phytochemical and pharmacological analysis, Indian Res. J. Pharm. Sci., 2016, vol. 3, p. 631.

    CAS  Google Scholar 

  109. Deng, Y., Ye, X., Chen, Y., Ren, H., Xia, L., Liu, Y., Liu, M., Liu, H., Zhang, H., Wang, K., Zhang, J., and Zhang, Z., Chemical characteristics of Platycodon grandiflorum and its mechanism in lung cancer treatment, Front. Pharmacol., 2021, vol. 11, p. 609825. https://doi.org/10.3389/fphar.2020.609825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

The work was supported financially by a Megagrant of the Government of the Russian Federation (agreement no. 075-15-2019-1882).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Tomilova.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving humans or animals performed by any of the authors.

Additional information

Translated by M. Shulskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomilova, S.V., Kitashov, A.V. & Nosov, A.M. Cardiac Glycosides: Distribution, Properties and Specificity of Formation in Plant Cell and Organ Cultures In Vitro. Russ J Plant Physiol 69, 41 (2022). https://doi.org/10.1134/S1021443722030165

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443722030165

Keywords:

Navigation