Skip to main content
Log in

Gasotransmitter Carbon Monoxide: Synthesis and Functions in Plants

  • REVIEWS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Carbon monoxide (CO) represents one of key gasotransmitter molecules involved in transduction of various signals necessary for regulation of many functions of living organisms. The review considers peculiarities of CO synthesis in plants and briefly characterizes heme oxygenase as a chief enzyme catalyzing the formation of carbon monoxide. Participation of CO in the processes of growth and development, in particular, seed germination, root formation, and senescence is discussed. Special attention is paid to the role of carbon monoxide in the formation of adaptive reactions to stressors of various nature. Mediation of CO-dependent biological effects by calcium ions, ROS, and nitric oxide is considered. In addition, the involvement of carbon monoxide in the action of other signal molecules, including phytohormones, is analyzed. The properties of the CO donors are briefly surveyed, and their possible value for biological experiments is assessed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

REFERENCES

  1. Wang, R., Overview of gasotransmitters and the related signaling network, in Gasotransmitters, Wang, R., Ed., Cambridge: R. Soc. Chem., 2018, ch. 1, p. 1. https://doi.org/10.1039/9781788013000-00001

  2. Yao, Y., Yang, Y., Li, C., Huang, D., Zhang, J., Wang, C., Li, W., Wang, N., Deng, Y., and Liao, W., Research progress on the functions of gasotransmitters in plant responses to abiotic stresses, Plants, 2019, vol. 8, p. 605. https://doi.org/10.3390/plants8120605

    Article  CAS  PubMed Central  Google Scholar 

  3. Karle, S.B., Guru, A., Dwivedi, P., and Kumar, K., Insights into the role of gasotransmitters mediating salt stress responses in plants, J. Plant Growth Regul., 2021, vol. 40, p. 2259. https://doi.org/10.1007/s00344-020-10293-z

    Article  CAS  Google Scholar 

  4. Takagi, T., Uchiyama, K., and Naito, Y., The therapeutic potential of carbon monoxide for inflammatory bowel disease, Digestion, 2015, vol. 91, p. 13. https://doi.org/10.1159/000368765

    Article  CAS  PubMed  Google Scholar 

  5. Motterlini, R. and Foresti, R., Biological signaling by carbon monoxide and carbon monoxide-releasing molecules, Am. J. Physiol. Cell Physiol., 2017, vol. 312, p. 302. https://doi.org/10.1152/ajpcell.00360.2016

    Article  Google Scholar 

  6. Wilks, S.S., Carbon monoxide in green plants, Science, 1959, vol. 129, p. 964. https://doi.org/10.1126/science.129.3354.964

    Article  CAS  PubMed  Google Scholar 

  7. Pandey, A.K. and Gautam, A., Stress responsive gene regulation in relation to hydrogen sulfide in plants under abiotic stress, Physiol. Plant., 2020, vol. 168, p. 511. https://doi.org/10.1111/ppl.13064

    Article  CAS  PubMed  Google Scholar 

  8. Mishra, V., Singh, P., Tripathi, D.K., Corpas, F.J., and Singh, V.P., Nitric oxide and hydrogen sulfide: an indispensable combination for plant functioning, Trends Plant Sci., 2021, vol. 26, p. 1270. https://doi.org/10.1016/j.tplants.2021.07.016

    Article  CAS  PubMed  Google Scholar 

  9. Feelisch, M. and Olson, K.R., Embracing sulfide and CO to understand nitric oxide biology, Nitric Oxide, 2013, vol. 35, p. 2. https://doi.org/10.1016/j.niox.2013.06.004

    Article  CAS  PubMed  Google Scholar 

  10. Santa-Cruz, D.M., Pacienza, N.A., Polizio, A.H., Balestrasse, K.B., Tomaro, M.L., and Yannarelli, G.G., Nitric oxide synthase-like dependent NO production enhances heme oxygenase up-regulation in ultraviolet-B-irradiated soybean plants, Phytochemistry, 2010, vol. 71, p. 1700. https://doi.org/10.1016/j.phytochem.2010.07.009

    Article  CAS  PubMed  Google Scholar 

  11. Lin, Y.T., Zhang, W., Qi, F., Cui, W.T., Xie, Y.J., and Shen, W.B., Hydrogen-rich water regulates cucumber adventitious root development in a heme oxygenase-1/carbon monoxide-dependent manner, J. Plant Physiol., 2014, vol. 171, p. 1. https://doi.org/10.1016/j.jplph.2013.08.009

    Article  CAS  PubMed  Google Scholar 

  12. Dekker, J. and Hargrove, M., Weedy adaptation in Setaria spp, vol. effects of gaseous environment on giant foxtail (Setaria faberii) (Poaceae) seed germination, Am. J. Bot., 2002, vol. 89, p. 410. https://doi.org/10.3732/ajb.89.3.410

    Article  CAS  PubMed  Google Scholar 

  13. Cao, Z., Xuan, W., Liu, Z., Li, X., Zhao, N., Xu, P., Wang, Z., Guan, R., and Shen, W., Carbon monoxide promotes lateral root formation in rapeseed, J. Integr. Plant Biol., 2007, vol. 49, p. 1070. https://doi.org/10.1111/j.1672-9072.2007.00482.x

    Article  CAS  Google Scholar 

  14. Chen, Y.H., Chao, Y.Y., Hsu, Y.Y., Hong, C.Y., and Kao, C.H., Heme oxygenase is involved in nitric oxide- and auxin-induced lateral root formation in rice, Plant Cell Rep., 2012, vol. 31, p. 1085. https://doi.org/10.1007/s00299-012-1228-x

    Article  CAS  PubMed  Google Scholar 

  15. Cui, W.T., Qi, F., Zhang, Y.H., Cao, H., Zhang, J., Wang, R., and Shen, W., Methane-rich water induces cucumber adventitious rooting through heme oxygenase1/carbon monoxide and Ca2+ pathways, Plant Cell Rep., 2015, vol. 34, p. 435. https://doi.org/10.1007/s00299-014-1723-3

    Article  CAS  PubMed  Google Scholar 

  16. Huang, J., Han, B., Xu, S., Zhou, M., and Shen, W., Heme oxygenase-1 is involved in the cytokinin-induced alleviation of senescence in detached wheat leaves during dark incubation, J. Plant Physiol., 2011, vol. 168, p. 768. https://doi.org/10.1016/j.jplph.2010.10.010

    Article  CAS  PubMed  Google Scholar 

  17. Zhang, S., Li, Q., and Mao, Y., Effect of carbon monoxide on active oxygen metabolism of postharvest Jujube, J. Food Technol. Res., 2014, vol. 1, p. 146. https://doi.org/10.18488/journal.58/2014.1.2/58.2.146.155

    Article  Google Scholar 

  18. Gahir, S., Bharath, P., and Raghavendra, A.S., The role of gasotransmitters in movement of stomata: mechanisms of action and importance for plant immunity, Biol. Plant, 2020, vol. 64, p. 623. https://doi.org/10.32615/bp.2020.071

    Article  CAS  Google Scholar 

  19. He, H. and He, L.F., Regulation of gaseous signaling molecules on proline metabolism in plants, Plant Cell Rep., 2018, vol. 37, p. 387. https://doi.org/10.1007/s00299-017-2239-4

    Article  CAS  PubMed  Google Scholar 

  20. Shekhawat, G.S. and Verma, K., Haem oxygenase (HO): an overlooked enzyme of plant metabolism and defence, J. Exp. Bot., 2010, vol. 61, p. 2255. https://doi.org/10.1093/jxb/erq074

    Article  CAS  PubMed  Google Scholar 

  21. Bilban, M., Haschemi, A., Wegiel, B., Chin, B.Y., Wagner, O., and Otterbein, L.E., Heme oxygenase and carbon monoxide initiate homeostatic signaling, J. Mol. Med., 2008, vol. 86, p. 267. https://doi.org/10.1007/s00109-007-0276-0

    Article  CAS  PubMed  Google Scholar 

  22. Verma, K. and Alam, A., Heme oxygenase 1 (HO1): an enzyme of plant system and its role against various abiotic stresses, in Sustainable Agriculture in the Era of Climate Change, Roychowdhury, R., Choudhury, S., Hasanuzzaman, M., and Srivastava, S., Eds., Cham: Springer-Verlag, 2020, p. 355. https://doi.org/10.1007/978-3-030-45669-6_16

  23. Wang, M. and Liao, W., Carbon monoxide as a signaling molecule in plants, Front. Plant Sci., 2016, vol. 7, p. 572. https://doi.org/10.3389/fpls.2016.00572

    Article  PubMed  PubMed Central  Google Scholar 

  24. Terry, M.J., Linley, P.J., and Kohchi, T., Making light of it: the role of plant heme oxygenases in phytochrome chromophore synthesis, Biochem. Soc. Transact., 2002, vol. 30, p. 604.

    Article  Google Scholar 

  25. Emborg, T.J., Walker, J.M., Noh, B., and Vierstra, R.D., Multiple heme oxygenase family members contribute to the biosynthesis of the phytochrome chromophore in Arabidopsis, Plant Physiol., 2006, vol. 140, p. 856. https://doi.org/10.1104/pp.105.074211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Balestrasse, K.B., Yannarelli, G.G., Noriega, G.O., Batlle, A., and Tomaro, M.L., Heme oxygenase and catalase gene expression in nodules and roots of soybean plants subjected to cadmium stress, Biometals, 2008, vol. 21, p. 433. https://doi.org/10.1007/s10534-008-9132-0

    Article  CAS  PubMed  Google Scholar 

  27. Davis, S., Bhoo, S.H., Durski, A.M., Walker, J.M., and Viersta, R.D., The heme oxygenase family required for phytochrome chromophore biosynthesis is necessary for proper photomorphogenesis in higher plants, Plant Physiol., 2001, vol. 126, p. 656. https://doi.org/10.1104/pp.126.2.65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Matsumoto, F., Obayashi, T., Sasaki-Sekimoto, Y., Ohta, H., Takamiya, K.-I., and Masuda, T., Gene expression profiling of the tetrapyrrole metabolic pathway in Arabidopsis with a mini-array system, Plant Physiol., 2004, vol. 135, p. 2379. https://doi.org/10.1104/pp.104.042408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Otterbein, L.E., Soares, M.P., Yamashita, K., and Bach, F.H., Heme oxygenase-1: unleashing the protective properties of heme, Trends Immunol., 2003, vol. 24, p. 449. https://doi.org/10.1016/s1471-4906(03)00181-9

    Article  CAS  PubMed  Google Scholar 

  30. Liu, Y., Xu, S., Ling, T., Xu, L., and Shen, W., Heme oxygenase/carbon monoxide system participates in regulating wheat seed germination under osmotic stress involving the nitric oxide pathway, J. Plant Physiol., 2010, vol. 167, p. 1371. https://doi.org/10.1016/j.jplph.2010.05.021

    Article  CAS  PubMed  Google Scholar 

  31. Xie, Y., Ling, T., Han, Y., Liu, K., Zheng, Q., Huang, L., Yuan, X., He, Z., Hu, B., Fang, L., Shen, Z., Yang, Q., and Shen, W., Carbon monoxide enhances salt tolerance by nitric oxide-mediated maintenance of ion homeostasis and up-regulation of antioxidant defence in wheat seedling roots, Plant Cell Environ., 2008, vol. 31, p. 1864. https://doi.org/10.1111/j.1365-3040.2008.01888.x

    Article  CAS  PubMed  Google Scholar 

  32. Han, Y., Zhang, J., Chen, X., Gao, Z., Xuan, W., Xu, S., Ding, X., and Shen, W., Carbon monoxide alleviates cadmium-induced oxidative damage by modulating glutathione metabolism in the roots of Medicago sativa, New Phytol., 2008, vol. 177, p. 155. https://doi.org/10.1111/j.1469-8137.2007.02251.x

    Article  CAS  PubMed  Google Scholar 

  33. Yannarelli, G.G., Noriega, G.O., Batlle, A., and Tomaro, M.L., Heme oxygenase up regulation in ultraviolet-B irradiated soybean plants involves reactive oxygen species, Planta, 2006, vol. 224, p. 1154. https://doi.org/10.1007/s00425-006-0297-x

    Article  CAS  PubMed  Google Scholar 

  34. Muramoto, T., Kohchi, T., Yokota, A., Hwang, I., and Goodman, H.M., The Arabidopsis photomorphogenic mutant hy1 is deficient in phytochrome chromophore biosynthesis as a result of a mutation in a plastid heme oxygenase, Plant Cell, 1999, vol. 11, p. 335. https://doi.org/10.1105/tpc.11.3.335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dixit, S., Verma, K., and Shekhawat, G.S., In vitro evaluation of mitochondrial-chloroplast subcellular localization of heme oxygenase1 (HO1) in Glycine max, Protoplasma, 2014, vol. 251, p. 671. https://doi.org/10.1007/s00709-013-0569-9

    Article  CAS  PubMed  Google Scholar 

  36. Zilli, C.G., Santa-Cruz, D.M., and Balestrasse, K.B., Heme oxygenase-independent endogenous production of carbon monoxide by soybean plants subjected to salt stress, Environ. Exp. Bot., 2014, vol. 102, p. 11. https://doi.org/10.1016/j.envexpbot.2014.01.012

    Article  CAS  Google Scholar 

  37. Jin, Q., Cui, W., Xie, Y., and Shen, W., Carbon monoxide: a ubiquitous gaseous signaling molecule in plants, in Gasotransmitters in Plants Signaling and Communication in Plants, Lamattina, L. and Garcia-Mata, C., Eds., Cham: Springer-Verlag, 2016, p. 3. https://doi.org/10.1007/978-3-319-40713-5_1

  38. Liu, K., Xu, S., Xuan, W., Ling, T., Cao, Z., Huang, B., Sun, Y., Fang, L., Liu, Z., Zhao, N., and Shen, W., Carbon monoxide counteracts the inhibition of seed germination and alleviates oxidative damage caused by salt stress in Oryza sativa, Plant Sci., 2007, vol. 172, p. 544. https://doi.org/10.1016/j.plantsci.2006.11.007

    Article  CAS  Google Scholar 

  39. Guo, K., Xia, K., and Yang, Z.M., Regulation of tomato lateral root development by carbon monoxide and involvement in auxin and nitric oxide, J. Exp. Bot., 2008, vol. 59, p. 3443. https://doi.org/10.1093/jxb/ern194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Guo, K., Kong, W.W., and Yang, Z.M., Carbon monoxide promotes root hair development in tomato, Plant Cell Environ., 2009, vol. 32, p. 1033. https://doi.org/10.1111/j.1365-3040.2009.01986.x

    Article  CAS  PubMed  Google Scholar 

  41. Amooaghaie, R., Tabatabaei, F., and Ahadi, A., Alterations in HO-1 expression, heme oxygenase activity and endogenous NO homeostasis modulate antioxidant responses of Brassica nigra against nano silver toxicity, J. Plant Physiol., 2018, vol. 228, p. 75. https://doi.org/10.1016/j.jplph.2018.01.012

    Article  CAS  PubMed  Google Scholar 

  42. He, D., Deng, G., Ying, S., Yang, W., Wei, J., and Li, P., Carbon monoxide signal breaks primary seed dormancy by transcriptional silence of DOG1 in Arabidopsis thaliana, Phyton, 2020, vol. 89, p. 633. https://doi.org/10.32604/phyton.2020.010498

    Article  Google Scholar 

  43. Jia, Y., Li, R., Yang, W., Chen, Z., and Hu, X., Carbon monoxide signal regulates light-initiated seed germination by suppressing SOM expression, Plant Sci., 2018, vol. 272, p. 88. https://doi.org/10.1016/j.plantsci.2018.04.009

    Article  CAS  PubMed  Google Scholar 

  44. Xuan, W., Huang, L., Li, M., Huang, B., Xu, S., Liu, H., Gao, Y., and Shen, W., Induction of growth elongation in wheat root segments by heme molecules: a regulatory role of carbon monoxide in plants? Plant Growth Regul., 2007, vol. 52, p. 41. https://doi.org/10.1007/s10725-007-9175-1

    Article  CAS  Google Scholar 

  45. Xuan, W., Xu, S., Yuan, X., and Shen, W., Carbon monoxide. A novel and pivotal signal molecule in plants? Plant Signaling Behav., 2008, vol. 3, p. 381. https://doi.org/10.4161/psb.3.6.5374

    Article  Google Scholar 

  46. Xuan, W., Zhu, F.-Y., Xu, S., Huang, B.-K., Ling, T.-F., Qi, J.-Y., Ye, M.-B., and Shen, W.-B., The heme oxygenase/carbon monoxide system is involved in the auxin-induced cucumber adventitious rooting process, Plant Physiol., 2008, vol. 148, p. 881. https://doi.org/10.1104/pp.108.125567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hsu, Y.Y., Chao, Y.-Y., and Kao, C.H., Methyl jasmonate-induced lateral root formation in rice: the role of heme oxygenase and calcium, J. Plant Physiol., 2013, vol. 170, p. 63. https://doi.org/10.1016/j.jplph.2012.08.015

    Article  CAS  PubMed  Google Scholar 

  48. Kolupaev, Yu.E., Karpets, Yu.V., Beschasniy, S.P., and Dmitriev, A.P., Gasotransmitters and their role in adaptive reactions of plant cells, Cytol. Genet., 2019, vol. 53, p. 392. https://doi.org/10.3103/S0095452719050098

    Article  Google Scholar 

  49. Bai, X., Chen, J., Kong, X., Todd, C.D., Yang, Y., Hu, X., and Li, D.Z., Carbon monoxide enhances the chilling tolerance of recalcitrant Baccaurea ramiflora seeds via nitric oxide-mediated glutathione homeostasis, Free Radical Biol. Med., 2012, vol. 53, p. 710. https://doi.org/10.1016/j.freeradbiomed.2012.05.042

    Article  CAS  Google Scholar 

  50. Cheng, T., Hu, L., Wang, P., Yang, X., Peng, Y., Lu, Y., Chen, J., and Shi, J., Carbon monoxide potentiates high temperature-induced nicotine biosynthesis in Tobacco, Int. J. Mol. Sci., 2018, vol. 19, p. e188. https://doi.org/10.3390/ijms19010188

    Article  CAS  PubMed  Google Scholar 

  51. Li, Z.-G. and Gu, S.-P., Hydrogen sulfide as a signal molecule in hematin-induced heat tolerance of tobacco cell suspension, Biol. Plant, 2016, vol. 60, p. 595. https://doi.org/10.1007/s10535-016-0612-8

    Article  CAS  Google Scholar 

  52. Kolupaev, Yu.E., Shkliarevskyi, M.A., Karpets, Yu.V., Shvidenko, N.V., and Lugovaya, A.A., ROS-dependent induction of antioxidant system and heat resistance of wheat seedlings by hemin, Russ. J. Plant Physiol., 2021, vol. 68, p. 322. https://doi.org/10.1134/S102144372101009X

    Article  CAS  Google Scholar 

  53. Chen, Y., Wang, M., Hu, L., Liao, W., Dawuda, M.M., and Li, C., Carbon monoxide is involved in hydrogen gas-induced adventitious root development in cucumber under simulated drought stress, Front. Plant Sci., 2017, vol. 8, p. 128. https://doi.org/10.3389/fpls.2017.00128

    Article  PubMed  PubMed Central  Google Scholar 

  54. She, X.P. and Song, X.G., Carbon monoxide-induced stomatal closure involves generation of hydrogen peroxide in Vicia faba guard cells, J. Integr. Plant Biol., 2008, vol. 50, p. 1539. https://doi.org/10.1111/j.1744-7909.2008.00716.x

    Article  CAS  PubMed  Google Scholar 

  55. Ling, T., Zhang, B., Cui, W., Wu, M., Lin, J., Zhou, W., Huang, J., and Shen, W., Carbon monoxide mitigates salt-induced inhibition of root growth and suppresses programmed cell death in wheat primary roots by inhibiting superoxide anion overproduction, Plant Sci., 2009, vol. 177, p. 331. https://doi.org/10.1016/j.plantsci.2009.06.004

    Article  CAS  Google Scholar 

  56. Verma, K., Dixit, S., Shekhawat, G.S., and Alam, A., Antioxidant activity of heme oxygenase 1 in Brassica juncea (L.) Czern. (Indian mustard) under salt stress, Turk. J. Biol., 2015, vol. 39, p. 540. https://doi.org/10.3906/biy-1501-28

    Article  CAS  Google Scholar 

  57. Wei, M.-Y., Chao, Y.-Y., and Kao, C.H. NaCl-induced heme oxygenase in roots of rice seedlings is mediated through hydrogen peroxide, Plant Growth Regul., 2013, vol. 69, p. 209. https://doi.org/10.1007/s10725-012-9762-7

    Article  CAS  Google Scholar 

  58. Mahawar, L. and Shekhawa, G.S., EsHO 1 mediated mitigation of NaCl induced oxidative stress and correlation between ROS, antioxidants and HO 1 in seedlings of Eruca sativa: underutilized oil yielding crop of arid region, Physiol. Mol. Biol. Plants, 2019, vol. 25, p. 895. https://doi.org/10.1007/s12298-019-00663-71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Yuan, X.X., Wang, J., Xie, Y.J., and Shen, W.B., Effects of carbon monoxide on salt tolerance and proline content of roots in wheat seedling, Plant Physiol. Commun., 2009, vol. 45, p. 567.

    CAS  Google Scholar 

  60. Zhang, C., Li, Y., Yuan, F., Hu, S., and He, P., Effects of hematin and carbon monoxide on the salinity stress responses of Cassia obtusifolia L. seeds and seedlings, Plant Soil, 2012, vol. 359, p. 85. https://doi.org/10.1007/s11104-012-1194-7

    Article  CAS  Google Scholar 

  61. Xu, S., Sa, Z.-S., Cao, Z.-Y., Xuan, W., Huang, B.-K., Ling, T.-F., Hu, Q.-Y., and Shen, W.-B., Carbon monoxide alleviates wheat seed germination inhibition and counteracts lipid peroxidation mediated by salinity, J. Integr. Plant Biol., 2006, vol. 48, p. 1168. https://doi.org/10.1111/j.1744-7909.2006.00337.x

    Article  CAS  Google Scholar 

  62. Shkliarevskyi, M.A., Kolupaev, Yu.E., Yastreb, T.O., Karpets, Yu.V., and Dmitriev, A.P., The effect of CO donor hemin on the antioxidant and osmoprotective systems state in Arabidopsis of a wild-type and mutants defective in jasmonate signaling under salt stress, Ukr. Biochem. J., 2021, vol. 93 (3), p. 39. https://doi.org/10.15407/ubj93.03.039

    Article  CAS  Google Scholar 

  63. Wei, Y.Y., Zheng, Q., Liu, Z.P., and Yang, Z.M., Regulation of tolerance of Chlamydomonas reinhardtii to heavy metal toxicity by heme oxygenase-1 and carbon monoxide, Plant Cell Physiol., 2011, vol. 52, p. 1665. https://doi.org/10.1093/pcp/pcr102

    Article  CAS  PubMed  Google Scholar 

  64. Meng, D.K., Chen, J., and Yang, Z.M., Enhancement of tolerance of Indian mustard (Brassica juncea) to mercury by carbon monoxide, J. Hazard. Mater., 2011, vol. 186, p. 1823. https://doi.org/10.1016/j.jhazmat.2010.12.062

    Article  CAS  Google Scholar 

  65. Chen, Q., Gong, C., Ju, X., Zhu, Z., Shen, W., Shen, Z., and Cui, J., Hemin through the heme oxygenase 1/ferrous iron, carbon monoxide system involved in zinc tolerance in Oryza sativa L., J. Plant Growth Regul., 2018, vol. 37, p. 947. https://doi.org/10.1007/s00344-018-9793-z

    Article  CAS  Google Scholar 

  66. Zhang, S., Wang, Q., Guo, Y., Kang, L., and Yu, Y., Carbon monoxide enhances the resistance of jujube fruit against postharvest Alternaria rot, Postharvest Biol. Technol., 2020, vol. 168, art. ID 111268. https://doi.org/10.1016/j.postharvbio.2020.111268

    Article  CAS  Google Scholar 

  67. He, H. and He, L., The role of carbon monoxide signaling in the responses of plants to abiotic stresses, Nitric Oxide, 2014, vol. 42, p. 40. https://doi.org/10.1016/j.niox.2014.08.011

    Article  CAS  PubMed  Google Scholar 

  68. Baudouin, E., The language of nitric oxide signaling, Plant Biol., 2011, vol. 13, p. 233. https://doi.org/10.1111/j.1438-8677.2010.00403.x

    Article  CAS  PubMed  Google Scholar 

  69. Kim, M.C., Chung, W.S., Yun, D., and Cho, M.J., Calcium and calmodulin-mediated regulation of gene expression in plants, Mol. Plant, 2009, vol. 2, p. 13. https://doi.org/10.1093/mp/ssn091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bürstenbinder, K., Möller, B., Plötner, R., Stamm, G., Hause, G., Mitra, D., and Abel, S., The IQD family of calmodulin-binding proteins links calcium signaling to microtubules, membrane subdomains, and the nucleus, Plant Physiol., 2017, vol. 173, p. 1692. https://doi.org/10.1104/pp.16.01743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Medvedev, S.S., Principles of calcium signal generation and transduction in plant cells, Russ. J. Plant Physiol., 2018, vol. 65, p. 771. https://doi.org/10.1134/S1021443718060109

    Article  CAS  Google Scholar 

  72. Wilkinson, W.J. and Kemp, P.J., Carbon monoxide: an emerging regulator of ion channels, J. Physiol., 2011, vol. 589, p. 3055. https://doi.org/10.1113/jphysiol.2011.206706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Neill, S., Barros, R., Bright, J., Desikan, R., Hancock, J., Harrison, J., Morris, P., Ribeiro, D., and Wilson, I., Nitric oxide, stomatal closure and abiotic stress, J. Exp. Bot., 2008, vol. 59, p. 165. https://doi.org/10.1093/jxb/erm293

    Article  CAS  PubMed  Google Scholar 

  74. Shkliarevskyi, M.A., Karpets, Yu.V., Kolupaev, Yu.E., Lugovaya, A.A., and Dmitriev, A.P., Calcium-dependent changes in cellular redox homeostasis and heat resistance of wheat plantlets under influence of hemin (carbon monoxide donor), Cytol. Genet., 2020, vol. 54, p. 522. https://doi.org/10.3103/S0095452720060109

    Article  Google Scholar 

  75. Mukherjee, S. and Corpas, F.J., Crosstalk among hydrogen sulfide (H2S), nitric oxide (NO) and carbon monoxide (CO) in root-system development and its rhizosphere interactions: a gaseous interactome, Plant Physiol. Biochem., 2020, vol. 155, p. 800. https://doi.org/10.1016/j.plaphy.2020.08.020

    Article  CAS  PubMed  Google Scholar 

  76. Song, X.G., She, X.P., and Zhang, B., Carbon monoxide-induced stomatal closure in Vicia faba is dependent on nitric oxide synthesis, Physiol. Plant, 2008, vol. 132, p. 514. https://doi.org/10.1111/j.1399-3054.2007.01026.x

    Article  CAS  PubMed  Google Scholar 

  77. Shkliarevskyi, M.A., Kolupaev, Yu.E., Karpets, Yu.V., Lugovaya, A.A., and Bessonova, V.P., Involvement of nitrate reductase and nitric oxide (NO) in implementation of the stress-protective action of a carbon monoxide (CO) donor on wheat seedlings under hyperthermy, Russ. J. Plant Physiol., 2021, vol. 68, p. 688. https://doi.org/10.1134/S1021443721040166

    Article  CAS  Google Scholar 

  78. Sane, P.V., Kumar, N., Baijal, M., Singh, K.K., and Kochhar, V.K., Activation of nitrate reductase by calcium and calmodulin, Phytochemistry, 1987, vol. 26, p. 1289. https://doi.org/10.1016/S0031-9422(00)81796-3

    Article  CAS  Google Scholar 

  79. Gao, H., Jia, Y., Guo, S., Lv, G., Wang, T., and Juan, L., Exogenous calcium affects nitrogen metabolism in root-zone hypoxia-stressed muskmelon roots and enhances short-term hypoxia tolerance, J. Plant Physiol., 2011, vol. 168, p. 1217. https://doi.org/10.1016/j.jplph.2011.01.022

    Article  CAS  PubMed  Google Scholar 

  80. Gautam, V., Kaur, R., Kohli, S.K., Verma, V., Kaur, P., Singh, R., Saini, P., Arora, S., Thukral, A.K., Karpets, Yu.V., Kolupaev, Yu.E., and Bhardwaj, R., ROS compartmentalization in plant cells under abiotic stress condition, in Reactive Oxygen Species and Antioxidant Systems in Plants: Role and Regulation under Abiotic Stress, Khan, M.I.R. and Khan, N.A., Eds., Singapore: Springer-Verlag, 2017, p. 89. https://doi.org/10.1007/978-981-10-5254-5_4

  81. Sharova, E.I. and Medvedev, S.S., Redox reactions in apoplast of growing cells, Russ. J. Plant Physiol., 2017, vol. 64, p. 1. https://doi.org/10.1134/S1021443717010149

    Article  CAS  Google Scholar 

  82. Minibayeva, E.V., Gordon, L.K., Kolesnikov, O.P., and Chasov, A.V., Role of extracellular peroxidase in the superoxide production by wheat root cells, Protoplasma, 2001, vol. 217, p. 125. https://doi.org/10.1007/BF01289421

    Article  CAS  PubMed  Google Scholar 

  83. Kreslavski, V.D., Los, D.A., Allakhverdiev, S.I., and Kuznetsov, Vl.V., Signaling role of reactive oxygen species in plants under stress, Russ. J. Plant Physiol., 2012, vol. 59, p. 141. https://doi.org/10.1134/S1021443712020057

    Article  CAS  Google Scholar 

  84. Mamaeva, A.S., Fomenkov, A.A., Nosov, A.V., Moshkov, I.E., Novikova, G.V., Mur, L.A.J., and Hall, M.A., Regulatory role of nitric oxide in plants, Russ. J. Plant Physiol., 2015, vol. 62, p. 427. https://doi.org/10.1134/S1021443715040135

    Article  CAS  Google Scholar 

  85. Wang, Y.-Q., Liu, Y.-H., Wang, S., Du, H.-M., and Shen, W.-B., Hydrogen agronomy: research progress and prospects, J. Zhejiang Univ., Sci., B, 2020, vol. 21, p. 841. https://doi.org/10.1631/jzus.B2000386

    Article  Google Scholar 

  86. Cao, Z., Huang, B., Wang, Q., Xuan, W., Ling, T., Zhang, B., Chen, X., Nie, L., and Shen, W., Involvement of carbon monoxide produced by heme oxygenase in ABA-induced stomatal closure in Vicia faba and its proposed signal transduction pathway, Chin. Sci. Bull., 2007, vol. 52, p. 2365. https://doi.org/10.1007/s11434-007-0358-y

    Article  CAS  Google Scholar 

  87. Shan, C., Wang, T., Zhou, Y., and Wang, W., Hydrogen sulfide is involved in the regulation of ascorbate and glutathione metabolism by jasmonic acid in Arabidopsis thaliana, Biol. Plant, 2018, vol. 62, p. 188. https://doi.org/10.1007/s10535-017-0740-9

    Article  CAS  Google Scholar 

  88. Ton, J., Flors, V., and Mauch-Mani, B., The multifaceted role of ABA in disease resistance, Trends Plant Sci., 2009, vol. 14, p. 310. https://doi.org/10.1016/j.tplants.2009.03.006

    Article  CAS  PubMed  Google Scholar 

  89. Yastreb, T.O., Kolupaev, Yu.E., Shkliarevskyi, M.A., and Dmitriev, A.P., Participation of jasmonate signaling components in the development of Arabidopsis thaliana’s salt resistance induced by H2S and NO donors, Russ. J. Plant Physiol., 2020, vol. 67, p. 827. https://doi.org/10.1134/S1021443720050192

    Article  CAS  Google Scholar 

  90. Lamar, C.A., Mahesh, V.B., and Brann, D.W., Regulation of gonadotrophin-releasing hormone (GnRH) secretion by heme molecules: a regulatory role for carbon monoxide? Endocrinology, 1996, vol. 137, p. 790. https://doi.org/10.1210/endo.137.2.8593832

    Article  CAS  PubMed  Google Scholar 

  91. Landaw, S.A., Callahan, E.W., Jr., and Schmid, R., Catabolism of heme in vivo: comparison of the simultaneous production of bilirubin and carbon monoxide, J. Clin. Invest., 1970, vol. 49, p. 914. https://doi.org/10.1172/JCI106311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Ryter, S.W., Therapeutic potential of heme oxygenase-1 and carbon monoxide in acute organ injury, critical illness, and inflammatory disorders, Antioxidants, 2020, vol. 9, p. 1153. https://doi.org/10.3390/antiox9111153

    Article  CAS  PubMed Central  Google Scholar 

  93. Le, C.T.T., Brumbarova, T., and Bauer, P., The interplay of ROS and iron signaling in plants, in Redox Homeostasis in Plants: Signaling and Communication in Plants, Panda, S.K. and Yamamoto, Y.Y., Eds., Cham: Springer-Verlag, 2019, p. 43. https://doi.org/10.1007/978-3-319-95315-1_3

  94. Sa, Z.S., Huang, L.Q., Wu, G.L., Ding, J.P., Chen, X.Y., Yu, T., Ci, S., and Shen, W.B., Carbon monoxide: a novel antioxidant against oxidative stress in wheat seedling leaves, J. Integr. Plant Biol., 2007, vol. 49, p. 638. https://doi.org/10.1111/j.1744-7909.2007.00461.x

    Article  CAS  Google Scholar 

  95. Trchounian A., Petrosyan, M., and Sahakyan, N., Plant cell redox homeostasis and reactive oxygen species, in Redox State as a Central Regulator of Plant-Cell Stress Responses, Gupta, D.K., Palma, J.M., and Corpas, F.J., Eds., Cham: Springer-Verlag, 2016, p. 25. https://doi.org/10.1007/978-3-319-44081-1_2

  96. Kolupaev, Yu.E., Yastreb, T.O., Oboznyi, A.I., Ryabchun, N.I., and Kirichenko, V.V., Constitutive and cold-induced resistance of rye and wheat seedlings to oxidative stress, Russ. J. Plant Physiol., 2016, vol. 63, p. 326. https://doi.org/10.1134/S1021443716030067

    Article  CAS  Google Scholar 

  97. Magierowski, M., Magierowska, K., Hubalewska-Mazgaj, M., Sliwowski, Z., Ginter, G., Pajdo, R., Chmura, A., Kwiecien, S., and Brzozowski, T., Carbon monoxide released from its pharmacological donor, tricarbonyldichlororuthenium (II) dimer, accelerates the healing of pre-existing gastric ulcers., Br. J. Pharmacol., 2017, vol. 174, p. 3654. https://doi.org/10.1111/bph.13968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Beschasnyi, S.P. and Hasiuk, O.M., The effect of carbon monoxide’s donor CORM-2 on erythrocyte aquaporins, World Med. Biol., 2021, vol. 2, p. 167. https://doi.org/10.26724/2079-8334-2021-2-76-167-173

    Article  Google Scholar 

  99. Adach, W. and Olas, B., Carbon monoxide and its donors—their implications for medicine, Future Med. Chem., 2019, vol. 11, p. 60. https://doi.org/10.4155/fmc-2018-0215

    Article  CAS  Google Scholar 

  100. Adach, W., Błaszczyk, M., and Olas, B., Carbon monoxide and its donors—Chemical and biological properties, Chem.-Biol. Interact., 2020, vol. 318, art. ID 108973. https://doi.org/10.1016/j.cbi.2020.108973

    Article  CAS  PubMed  Google Scholar 

  101. Yuan, Z., Yang, X., and Wang, B., Redox and catalase-like activities of four widely used carbon monoxide releasing molecules (CORMs), Chem. Sci., 2021, vol. 12, art. ID 13013. https://doi.org/10.1039/D1SC03832J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kolupaev, Yu.E. and Yastreb, T.O., Jasmonate signaling and plant adaptation to abiotic stressors (review), Appl. Biochem. Microbiol., 2021, vol. 57, p. 1. https://doi.org/10.1134/S0003683821010117

    Article  CAS  Google Scholar 

  103. Corpas, F.J. and Palma, J.M., H2S signaling in plants and applications in agriculture, J. Adv. Res., 2020, vol. 24, p. 131. https://doi.org/10.1016/j.jare.2020.03.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Singhal, R.K., Jatav, H.S., Aftab, T., Pandey, S., Mishra, U.N., Chauhan, J., Chand, S., Indu, Saha, D., Dadarwal, B.K., Chandra, K., Khan, M.A., Rajput, V.D., Minkina, T., Narayana, E.S., Sharma, M.K., et al., Roles of nitric oxide in conferring multiple abiotic stress tolerance in plants and crosstalk with other plant growth regulators, J. Plant Growth Regul., 2021, vol. 40, p. 2303. https://doi.org/10.1007/s00344-021-10446-8

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

I am grateful to T.O. Yastreb for assistance in preparation of the illustrations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. E. Kolupaev.

Ethics declarations

Conflict of interests. The author declares that he has no conflict of interests.

Statement on the welfare of humans or animals. This article does not contain any studies involving humans or animals performed by the author.

Additional information

Translated by A. Aver’yanov

Abbreviations: 6-BAP—6-benzylaminopurine; BV—biliverdin; HO—heme oxygenase; PTIO—2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide; SOD—superoxide dismutase.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolupaev, Y.E. Gasotransmitter Carbon Monoxide: Synthesis and Functions in Plants. Russ J Plant Physiol 69, 42 (2022). https://doi.org/10.1134/S1021443722030074

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S1021443722030074

Keywords:

Navigation