Skip to main content
Log in

Arbuscular Mycorrhizal Symbiosis Improves Growth, Physiological, and Biochemical Properties of Wheat under Different Irrigation Regimes in a Semiarid Area

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Recently the use of biofertilizers is a principal alternative of chemical inputs to alleviate the adverse effects of water deficit. The present study was carried out to assess the arbuscular mycorrhizal fungi (AMF) effects on plant growth, seed yield, physiological, and biochemical properties of wheat (Triticum aestivum L. ‘Pishtaz’) under different irrigation regimes during 2017–2018. Water stress was applied in three levels as well watered (90% FC), moderate water stress (60% FC), and severe water stress (30% FC); AMF inoculation was used as inoculated with Glomus mosae and uninoculated treatment. The results showed the severe stress lead to significant reduction in plant height, seed number and weight, chlorophyll (Chl) content, total soluble sugar (TSS). However, phenylalanine ammonia-lyase (PAL) and catalase (CAT) activities, and proline concentration increases with enhancing water stress rate. AMF symbiosis improved plant height, seed weight, Chlcontent, TSS, total phenolic content (TPC), and total flavonoid content (TFC) especially at moderate and severe stress conditions. Heat map analysis showed 30% FC was significantly different from 90 and 60% FC and also PAL, CAT, and proline had the strongest effect in distinguishing the clusters. It can be concluded that ‘Pishtaz’ cultivar plants can tolerate water stress up to 60% with no significant changes in most physiological and biochemical properties. In addition, AMF can protect the plants under stress conditions with improving nutrients and water availability for plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Salehi, A., Tasdighi, H., and Gholamhoseini, M., Evaluation of proline, chlorophyll, soluble sugar content and uptake of nutrients in the German chamomile (Matricaria chamomilla L.) under drought stress and organic fertilizer treatments, Asian Pac. J. Trop. Biomed., 2016, vol. 6, p. 886.

    Article  CAS  Google Scholar 

  2. Ahmad, M., Usman, AR., Al-Faraj, AS., Ahmad, M., Sallam, A., and Al-Wabel, M.I., Phosphorus-loaded biochar changes soil heavy metals availability and uptake potential of maize (Zea mays L.) plants, Chemosphere, 2018, vol. 194, p. 327.

    Article  CAS  Google Scholar 

  3. Cheeseman, J., Food security in the face of salinity, drought, climate change and population growth, in Halophytes for Food Security in Dry Lands, Khan, M.A., Ozturk, M., Gul, B., and Ahmed, M.Z., Eds., London: Academic, 2016, vol. 12, p. 111.

    Google Scholar 

  4. Quiroga, G., Erice, G., Aroca, R., Chaumont, F., and Ruiz-Lozano, J.M., Enhanced drought stress tolerance by the arbuscular mycorrhizal symbiosis in a drought-sensitive maize cultivar is related to a broader and differential regulation of host plant aquaporins than in a drought-tolerant cultivar, Front. Plant Sci., 2017, vol. 8, p. 1056.

    Article  Google Scholar 

  5. Symanczik, S., Lehmann, M.F., Wiemken, A., Boller, T., and Courty, P.E., Effects of two contrasted arbuscular mycorrhizal fungal isolates on nutrient uptake by Sorghum bicolor under drought, Mycorrhiza, 2018, vol. 28, p. 779.

    Article  CAS  Google Scholar 

  6. Ruiz-Sánchez, M., Aroca, R., Muñoz, Y., Polón, R., and Ruiz-Lozano, J.M., The arbuscular mycorrhizal symbiosis enhances the photosynthetic efficiency and the antioxidative response of rice plants subjected to drought stress, J. Plant Physiol., 2010, vol. 167, p. 862.

    Article  Google Scholar 

  7. Grümberg, B.C., Urcelay, C., Shroeder, M.A., Vargas-Gil, S., and Luna, C.M., The role of inoculum identity in drought stress mitigation by arbuscular mycorrhizal fungi in soybean, Biol. Fertil. Soil, 2015, vol. 51, p. 1.

    Article  Google Scholar 

  8. Ruiz-Lozano, J.M., Aroca, R., Zamarreño, Á.M., Molina, S., Andreo-Jiménez, B., Porcel, R., and López-Ráez, J.A., Arbuscular mycorrhizal symbiosis induces strigolactone biosynthesis under drought and improves drought tolerance in lettuce and tomato, Plant Cell Environ., 2016, vol. 39, p. 441.

    Article  CAS  Google Scholar 

  9. Quiroga, G., Erice, G., Aroca, R., Zamarreño, Á.M., García-Mina, J.M., and Ruiz-Lozano, J.M., Arbuscular mycorrhizal symbiosis and salicylic acid regulate aquaporins and root hydraulic properties in maize plants subjected to drought, Agric. Water Manage., 2018, vol. 202, p. 271.

    Article  Google Scholar 

  10. Sharma, S., Villamor, J.G., and Verslues, P.E., Essential role of tissue-specific proline synthesis and catabolism in growth and redox balance at low water potential, Plant Physiol., 2011, vol. 157, p. 292.

    Article  CAS  Google Scholar 

  11. Arnon, D.I., Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris, Plant Physiol., 1949, vol. 24, p. 1.

    Article  CAS  Google Scholar 

  12. Fei, M.L., Tong, L.I., Wei, L.I., and De Yang, L., Changes in antioxidant capacity, levels of soluble sugar, total polyphenol, organosulfur compound and constituents in garlic clove during storage, Ind. Crop Prod., 2015, vol. 69, p. 137.

    Article  CAS  Google Scholar 

  13. Bates, L.S., Waldren, R.P., and Teare, I.D., Rapid determination of free proline for water-stress studies, Plant Soil, 1973, vol. 39, p. 205.

    Article  CAS  Google Scholar 

  14. Saki, A., Mozafari, H., Asl, K.K., Sani, B., and Mirza, M., Plant yield, antioxidant capacity and essential oil quality of Satureja mutica supplied with cattle manure and wheat straw in different plant densities, Commun. Soil Sci. Plant Anal., 2019, vol. 50, p. 2683.

    Article  CAS  Google Scholar 

  15. Chandlee, J.M. and Scandalios, J.G., Analysis of variants affecting the catalase developmental program in maize scutellum, Theor. Appl. Genet., 1984, vol. 69, p. 71.

    Article  CAS  Google Scholar 

  16. Hahlbrock, K. and Ragg, H., Light-induced changes of enzyme activities in parsley cell suspension cultures: effects of inhibitors of RNA and protein synthesis, Arch. Biochem. Biophys., 1975, vol. 166, p. 41.

    Article  CAS  Google Scholar 

  17. Pons, C., Voß, A.C., Schweiger, R., and Müller, C., Effects of drought and mycorrhiza on wheat and aphid infestation, Ecol. Evol., 2020, vol. 12, p. 320.

    Google Scholar 

  18. Gholamhoseini, M., Ghalavand, A., Dolatabadian, A., Jamshidi, E., and Khodaei-Joghan, A., Effects of arbuscular mycorrhizal inoculation on growth, yield, nutrient uptake and irrigation water productivity of sunflowers grown under drought stress, Agric. Water Manage., 2013, vol. 117, p. 106.

    Article  Google Scholar 

  19. Wang, P., Richter, A.S., Kleeberg, J.R., Geimer, S., and Grimm, B., Post-translational coordination of chlorophyll biosynthesis and breakdown by BCMs maintains chlorophyll homeostasis during leaf development, Nat. Commun., 2020, vol. 11, p. 1.

    Google Scholar 

  20. Shivakrishna, P., Reddy, K.A., and Rao, D.M., Effect of PEG-6000 imposed drought stress on RNA content, relative water content (RWC), and chlorophyll content in peanut leaves and roots, Saudi J. Biol. Sci., 2018, vol. 25, p. 285.

    Article  Google Scholar 

  21. Zhang, T., Hu, Y., Zhang, K., Tian, C., and Guo, J., Arbuscular mycorrhizal fungi improve plant growth of Ricinus communis by altering photosynthetic properties and increasing pigments under drought and salt stress, Ind. Crop Prod., 2018, vol. 117, p. 13.

    Article  CAS  Google Scholar 

  22. Mohammadi, M., Modarres-Sanavy, S.A.M., Pirdashti, H., Zand, B., and Tahmasebi-Sarvestani, Z., Arbuscular mycorrhizae alleviate water deficit stress and improve antioxidant response, more than nitrogen fixing bacteria or chemical fertilizer in the evening primrose, Rhizosphere, 2019, vol. 9, p. 76.

    Article  Google Scholar 

  23. Mathur, S., Tomar, R.S., and Jajoo, A., Arbuscular mycorrhizal fungi (AMF) protects photosynthetic apparatus of wheat under drought stress, Photosynth. Res., 2019, vol. 139, p. 227.

    Article  CAS  Google Scholar 

  24. Zhao, R., Guo, W., Bi, N., Guo, J., Wang, L., Zhao, J., and Zhang, J., Arbuscular mycorrhizal fungi affect the growth, nutrient uptake and water status of maize (Zea mays L.) grown in two types of coal mine spoils under drought stress, Appl. Soil Ecol., 2015, vol. 88, p. 41.

    Article  Google Scholar 

  25. Rana, V., Ram, S., and Nehra, K., Review proline biosynthesis and it’s role in abiotic stress, Int. J. Agric. Innovations Res., 2017, vol. 6, p. 2319.

    Google Scholar 

  26. Tyagi, J., Varma, A., and Pudake, R.N., Evaluation of comparative effects of arbuscular mycorrhiza (Rhizophagus intraradices) and endophyte (Piriformospora indica) association with finger millet (Eleusine coracana) under drought stress, Eur. J. Soil Biol., 2017, vol. 81, p. 1.

    Article  CAS  Google Scholar 

  27. Rezazadeh S., Aghayari F., Paknejad F., and Rezaee M., Physiological and biochemical responses of directly seeded and transplanted maize (Zea mays L.) supplied with plant growth-promoting rhizobacteria (PGPR) under water stress, Iran. J. Plant Physiol., 2020, vol. 10, p. 3009.

    Google Scholar 

  28. Amiri, R., Nikbakht, A., and Etemadi, N., Alleviation of drought stress on rose geranium [Pelargonium graveolens (L.) Herit.] in terms of antioxidant activity and secondary metabolites by mycorrhizal inoculation, Sci. Hortic. (Amsterdam), 2015, vol. 197, p. 373.

    Article  CAS  Google Scholar 

  29. Zubek, S., Rola, K., Szewczyk, A., Majewska, M.L., and Turnau, K., Enhanced concentrations of elements and secondary metabolites in Viola tricolor L. induced by arbuscular mycorrhizal fungi, Plant Soil, 2015, vol. 390, p. 129.

    Article  CAS  Google Scholar 

  30. Ren, A.T, Zhu, Y., Chen, Y.L., Ren, H.X., Li, J.Y., Abbott, L.K., and Xiong, Y.C., Arbuscular mycorrhizal fungus alters root-sourced signal (abscisic acid) for better drought acclimation in Zea mays L. seedlings, Environ. Exp. Bot., 2019, vol. 167, p. 103824.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding author

Correspondence to H. Abbaspour.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zebhi taft, H., Abbaspour, H., Peyvandi, M. et al. Arbuscular Mycorrhizal Symbiosis Improves Growth, Physiological, and Biochemical Properties of Wheat under Different Irrigation Regimes in a Semiarid Area. Russ J Plant Physiol 68, 1135–1142 (2021). https://doi.org/10.1134/S1021443721060200

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443721060200

Keywords:

Navigation