Skip to main content
Log in

Wake Up: it’s Time to Bloom

  • REVIEWS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The transition from vegetative to floral buds is a complex phenomenon regulated by many factors. The timing of floral transduction has a direct impact on the reproductive success and is influenced by physiological signals mediated endogenously as well as exogenously. Flowering is the first step of sexual reproduction, so it is important to find out the factors that regulate the signals during the transition phase. The instance of floral evocation has started an unstoppable cascade on the path of reproductive success which can be regulated by sensible signals. The receptivity and inductive signals essential for flowering vary in plant species, and, create a line of differentiation, although basic calls are conserved. The transition progression in plants for blooming under diverse environmental facilities provokes the identity to force the change from vegetative to reproductive phase. Winter memory, light flakes, endogenous hormonal cycling, nutrient status, and contiguous environments are all the factors which set the center stage for flowering. Flowering is well-established by approaches which work in a combinatorial manner and, ensure a cushion for the plant to create a miniature for future. In this review, we provide a detailed outlook on fundamental cues instigating blooming: where, how and when the flowering signals are created.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Andrés, F. and Coupland, G., The genetic basis of flowering responses to seasonal cues, Nat. Rev. Genet., 2012, vol. 13, p. 627.

    Article  PubMed  CAS  Google Scholar 

  2. Berry, S. and Dean, C., Environmental perception and epigenetic memory: mechanistic insight through FLC, Plant J., 2015, vol. 83, p. 133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Jacqmard, A., Gadisseur, I., and Bernier, G., Cell division and morphological changes in the shoot apex of Arabidopsis thaliana during floral transition, Ann. Bot., 2003, vol. 91, p. 571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Cho, L.-H., Pasriga, R., Yoon, J., Jeon, J.-S., and An, G., Roles of sugars in controlling flowering time, J. Plant Biol., 2018, vol. 61, p. 121.

    Article  CAS  Google Scholar 

  5. Cho, L.H., Yoon, J., and An, G., The control of flowering time by environmental factors, Plant J., 2017, vol. 90, p. 708.

    Article  CAS  PubMed  Google Scholar 

  6. Balanzà, V., Martínez-Fernández, I., and Ferrándiz, C., Sequential action of FRUITFULL as a modulator of the activity of the floral regulators SVP and SOC1, J. Exp. Bot., 2014, vol. 65, p. 1193.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Liu, C., Chen, H., Er, H.L., Soo, H.M., Kumar, P.P., Han, J.H., Liou, Y.C., and Yu, H., Direct interaction of AGL24 and SOC1 integrates flowering signals in Arabidopsis, Development, 2008, vol. 135, p. 1481.

    Article  CAS  PubMed  Google Scholar 

  8. Falavigna, V.S., Guitton, B., Costes, E., and Andrés, F., I want to (bud) break free: the potential role of DAM and SVP-like genes in regulating dormancy cycle in temperate fruit trees, Front. Plant Sci., 2019, vol. 9, p. 1990.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Li, C.H., Yu, N., and Jiang, S.M., Down-regulation of S-adenosyl homocysteine hydrolase reveals a role of cytokinin in promoting trans-methylation reactions, Planta, 2008, vol. 228, p. 125.

    Article  CAS  PubMed  Google Scholar 

  10. Immink, R.G., Posé, D., Ferrario, S., Ott, F., Kaufmann, K., Valentim, F.L., de Folter, S., van der Wal, F., van Dijk, A.D., Schmid, M., and Angenent, G.C., Characterization of SOC1’s central role in flowering by the identification of its upstream and downstream regulators, Plant Physiol., 2012, vol. 160, p. 433.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Preston, J.C. and Kellogg, E.A., Reconstructing the evolutionary history of paralogous APETALA1/FRUITFULL-like genes in grasses (Poaceae), Genetics, 2006, vol. 174, p. 421.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Fornara, F., Panigrahi, K.C.S., Gissot, L., Sauerbrunn, N., Ruhl, M., Jarillo, J.A., and Coupland, G., Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response, Dev. Cell, 2009, vol. 17, p. 75.

    Article  CAS  PubMed  Google Scholar 

  13. Zhao, Y., Antoniou-Kourounioti, R.L., Calder, G., Dean, C., and Howard, M., Temperature-dependent growth contributes to long-term cold sensing, Nature, 2020, vol. 283, p. 825.

    Article  CAS  Google Scholar 

  14. Garner, W.W. and Allard, H.A., Effect of the relative length of day and night and other factors of the environment on growth and reproduction in plants, J. Agric. Res., 1920, vol. 18, p. 553.

    Google Scholar 

  15. Bunning, E., Circadian rhythms and the time measurement in photoperiodism, Cold Spring Harb. Symp., Quant. Biol., 1960, vol. 25, p. 249.

    Article  Google Scholar 

  16. Chailakhyan, M.Kh., New facts in support of the hormonal theory of plant development, C. R. Acad. Sci., 1936, vol. 13, p. 79.

    Google Scholar 

  17. Luccioni, L., Krzymuski, M., Sánchez-Lamas, M., Karayekov, E., Cerdán, P.D., and Casal, J.J., CONSTANS delays Arabidopsis flowering under short days, Plant J., 2019, vol. 97, p. 923.

    Article  CAS  PubMed  Google Scholar 

  18. Hughes, R.M., Vrana, J.D., Song, J., and Tucker, C.L., Light-dependent, dark-promoted interaction between Arabidopsis cryptochrome 1 and phytochrome B proteins, J. Biol. Chem., 2012, vol. 287, p. 22165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mockler, T., Yang, H., Yux, H., Parikh, D., Cheng, Y.C., Dolan, S., and Lin, C., Regulation of photoperiodic flowering by Arabidopsis photoreceptors, Proc. Natl. Acad. Sci. U.S.A., 2003, vol. 100, p. 2140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ishikawa, R., Tamaki, S., Yokoi, S., Inagaki, N., Shinomura, T., Takano, M., and Shimamoto, K., Suppression of the floral activator Hd3a is the principal cause of the night break effect in rice, Plant Cell, 2005, vol. 17, p. 3326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Soy, J., Leivar, P., Gonzalez-Schain, N., Martín, G., Diaz, C., Sentandreu, M., Al-Sady, B., Quail, P.H., and Monte, E., Molecular convergence of clock and photosensory pathways through PIF3-TOC1 interaction and co-occupancy of target promoters, Proc. Natl. Acad. Sci. U.S.A., 2016, vol. 113, p. 4870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kamioka, M., Takao, S., Suzuki, T., Taki, K., Higashiyama, T., Kinoshita, T., and Nakamichi, N., Direct repression of evening genes by CIRCADIAN CLOCK-ASSOCIATED1 in the Arabidopsis circadian clock, Plant Cell, 2016, vol. 28, p. 696.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Baudry, A., Ito, S., Song, Y.H., Strait, A.A., Kiba, T., Lu, S., Henriques, R., Pruneda-Paz, J.L., Chua, N.H., Tobin, E.M., Kay, S.A., and Imaizumi, T., F-box proteins FKF1 and LKP2 act in concert with ZEITLUPE to control Arabidopsis clock progression, Plant Cell, 2010, vol. 22, p. 606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rausenberger, J., Tscheuschler, A., Nordmeier, W., Wüst, F., Timmer, J., Schäfer, E., Fleck, C., and Hiltbrunner, A., Photoconversion and nuclear trafficking cycles determine phytochrome A as response profile to far-red light, Cell, 2011, vol. 146, p. 813.

    Article  CAS  PubMed  Google Scholar 

  25. Lau, O.S., Huang, X., Charron, J.B., Lee, J.H., Li, G., and Deng, X.W., Interaction of Arabidopsis DET1 with CCA1 and LHY in mediating transcriptional repression in the plant circadian clock, Mol. Cell, 2011, vol. 43, p. 703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wang, Q., Zuo, Z., Wang, X., Gu, L., Yoshizumi, T., Yang, Z., Yang, L., Liu, Q., Liu, W., Han, Y.J., Kim, J.I., Liu, B., Wohlschlegel, J.A., Matsui, M., Oka, Y., and Lin, C., Photoactivation and inactivation of Arabidopsis cryptochrome 2, Science, 2016, vol. 354, p. 343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cashmore, A.R., Cryptochromes: enabling plants and animals to determine circadian time, Cell, 2003, vol. 114, p. 543.

    Google Scholar 

  28. Yang, L., Wen, X., Fu, J., and Dai, S., ClCRY2 facilitates floral transition in Chrysanthemum lavandulifolium by affecting the transcription of circadian clock-related genes under short-day photoperiods, Hortic. Res., 2018, vol. 5, p. 58.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Kinmonth-Schultz, H.A., Golembeski, G.S., and Imaizumi, T., Circadian clock-regulated physiological outputs: dynamic responses in nature, Semin. Cell Dev. Biol., 2013, vol. 24, p. 407.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Kim, W., Latrasse, D., Servet, C., and Zhou, D.X., Arabidopsis histone deacetylase HDA9 regulates flowering time through repression of AGL19, Biochem. Biophy. Res. Commun., 2013, vol. 432, p. 394.

    Article  CAS  Google Scholar 

  31. Kevei, E., Gyula, P., and Hall, A., Forward genetic analysis of the circadian clock separates the multiple functions of ZEITLUPE, Plant Physiol., 2006, vol. 140, p. 933.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang, L., Fujiwara, S., and Somers, D.E., PRR5 regulates phosphorylation, nuclear import and subnuclear localization of TOC1 in the Arabidopsis circadian clock, EMBO J., 2010, vol. 29, p. 1903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Yeom, M., Kim, H., Lim, J., Shin, A.Y., Hong, S., Kim, J.I., and Nam, H.G., How do phytochromes transmit the light quality information to the circadian clock in Arabidopsis, Mol. Plant, 2014, vol. 7, p. 1701.

    Article  CAS  PubMed  Google Scholar 

  34. Ito, S., Song, Y.H., and Imaizumi, T., LOV domain-containing F-box proteins: light-dependent protein degradation modules in Arabidopsis, Mol. Plant, 2012, vol. 5, p. 573.

    Article  PubMed  CAS  Google Scholar 

  35. Song, Y.H., Smith, R.W., To, B.J., Millar, A.J., and Imaizumi, T., FKF1 conveys timing information for CONSTANS stabilization in photoperiodic flowering, Science, 2012, vol. 336, p. 1045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fornara, F., de Montaigu, A., and Coupland, G., SnapShot: control of flowering in Arabidopsis, Cell, 2010, vol. 141, p. 550.

    Article  PubMed  Google Scholar 

  37. Kasahara, H., Current aspects of auxin biosynthesis in plants, Biosci., Biotechnol., Biochem., 2016, vol. 80, p. 34.

    Article  CAS  Google Scholar 

  38. Okada, K., Ueda, J., Komaki, M.K., Bell, C.J., and Shimura, Y., Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation, Plant Cell, 1991, vol. 3, p. 684.

    Article  Google Scholar 

  39. Reinhardt, D., Mandel, T., and Kuhlemeier, C., Auxin regulates the initiation and radial position of plant lateral organs, Plant Cell, 2000, vol. 12, p. 507.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xiao, W.Y., Custard, K.D., Brown, R.C., Lemmon, B.E., Harada, J.J., Goldberg, R.B., and Fischer, R.L., DNA methylation is critical for Arabidopsis embryogenesis and seed viability, Plant Cell, 2006, vol.18, p. 805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Przemeck, G.K., Mattsson, J., Hardtke, C.S., Sung, Z.R., and Berleth, T., Studies on the role of the Arabidopsis gene MONOPTEROS in vascular development and plant cell axialization, Planta, 1996, vol. 200, p. 229.

    Article  CAS  PubMed  Google Scholar 

  42. Yamaguchi, N., Wu, M.-F., Winter, C.M., Berns, M.C., Nole-Wilson, S., Yamaguchi, A., Coupland, G., Krizek, B.A., and Wagner, D., A molecular framework for auxin-mediated initiation of flower primordial, Dev. Cell, 2013, vol. 24, p. 271.

    Article  CAS  PubMed  Google Scholar 

  43. Wu, S., O’Lexy, R., Xu, M., Chen X., Yu, Q., and Gallagher, K.L., Symplastic signaling instructs cell division, cell expansion, and cell polarity in the ground tissue of Arabidopsis thaliana roots, Proc. Natl. Acad. Sci. U.S.A., 2016, vol. 113, p. 11621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Tan, X., Calderon-Villalobos, L., Sharon M., Zheng, C., Robinson, C.V., Estelle, M., and Zheng, N., Mechanism of auxin perception by the TIR1 ubiquitin ligase, Nature, 2007, vol. 446, p. 640.

    Article  CAS  PubMed  Google Scholar 

  45. Mallory, A.C., Bartel, D.P., and Bartel, B., MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR 17 is essential for proper development and modulates expression of early auxin response genes, Plant Cell, 2005, vol. 17, p. 1375.

    Article  CAS  Google Scholar 

  46. Bartrina, I., Otto, E., Strnad, M., Werner, T., and Schmülling, T., Cytokinin regulates the activity of reproductive meristem, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana, Plant Cell, 2011, vol. 23, p. 69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Corbesier, L., Prinsen, E., and Jacqmard, A., Cytokinin levels in leaves, leaf exudate and shoot apical meristem of Arabidopsis thaliana during floral transition, J. Exp. Bot., 2003, vol. 54, p. 2517.

    Article  Google Scholar 

  48. Li C., Yu N., Jiang S.M., Shangguan, X.X., Wang, L.J., and Chen, X.Y., Down-regulation of S-adenosyl-lhomocysteine hydrolase reveals a role of cytokinin in promoting transmethylation reactions, Planta, 2008, vol. 228, p. 125.

    Article  CAS  PubMed  Google Scholar 

  49. Rubio-Somoza, I. and Weigel, D., MicroRNA networks and developmental plasticity in plants, Trends Plant Sci., 2011, vol. 16, p. 258.

    Article  CAS  PubMed  Google Scholar 

  50. Nagpal, P., Ellis, C.M., Weber, H., Ploense, S.E., Barkawi, L.S., Guilfoyle, T.J., Hagen, G., Alonso, J.M., Cohen, J.D., Farmer, E.E., Ecker, J.R., and Reed, J.W., Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation, Development, 2005, vol. 132, p. 4107.

    Article  CAS  PubMed  Google Scholar 

  51. Tabata, R., Ikezaki, M., Fujibe, T., Aida, M., Tian, C.E., Ueno, Y., Yamamoto, K.T., Machida, Y., Nakamura, K., and Ishiguro, S., Arabidopsis AUXIN RESPONSE FACTOR6 and 8 regulate jasmonic acid biosynthesis and floral organ development via repression of class 1 KNOX genes, Plant Cell Physiol., 2010, vol. 51, p. 164.

    Article  CAS  PubMed  Google Scholar 

  52. Park, J.-H., Halitschke, R., Kim, H.B., Baldwin, I.T., Feldmann, K.A., and Feyereisen, R., A knock-out mutation in allene oxide synthase results in male sterility and defective wound signal transduction in Arabidopsis due to a block in jasmonic acid biosynthesis, Plant J., 2002, vol. 31, p. 1.

    Article  PubMed  Google Scholar 

  53. Aukerman, M.J. and Sakai, H., Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes, Plant Cell, 2003, vol. 15, p. 2730.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Liu, Q. and Chen, Y.-Q., Insights into the mechanism of plant development: interactions of miRNAs pathway with phytohormone response, Biochem. Biophys. Res. Commun., 2009, vol. 384, p. 1.

    Article  CAS  PubMed  Google Scholar 

  55. Yamaguchi, S., Gibberellin metabolism and its regulation, Ann. Rev. Plant Biol., 2008, vol. 59, p. 225.

    Article  CAS  Google Scholar 

  56. Cheng, H., Qin, L., Lee, S., Fu, X., Richards, D.E., Cao, D., Luo, D., Harberd, N.P., and Peng, J., Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function, Development, 2004, vol. 131, p. 1055.

    Article  CAS  PubMed  Google Scholar 

  57. Sun, T. and Kamiya, Y., The Arabidopsis GA1 locus encodes the cyclase ent-kaurene synthetase A of gibberellins biosynthesis, Plant Cell, 1994, vol. 6, p. 1518.

    Google Scholar 

  58. Zhang, J.-Z., Mei, L., Liu, R., Khan, M.R.G., and Hu, C.-G., Possible involvement of locus-specific methylation on expression regulation of LEAFY homologous gene (CiLFY) during precocious trifoliate orange phase change process, PLoS One, 2014, vol. 9, p. 1.

    Google Scholar 

  59. Ogas, J., Kaufmann, S., Henderson, J., and Somerville, C., PICKLE is a CHD3 chromatin remodeling factor that regulates the transition from embryonic to vegetative development in Arabidopsis, Proc. Natl. Acad. Sci. U.S.A., 1999, vol. 96, p. 13839.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zhang, X., Clarenz, O., Cokus, S., Bernatavichute, Y.V., Pellegrini, M., Goodrich, J., and Jacobsen, S.E., Whole-genome analysis of histone H3 lysine 27 trimethylation in Arabidopsis, PLoS Biol., 2007, vol. 5, p. 129.

    Article  CAS  Google Scholar 

  61. Henderson, J.T., Li, H.-C., Rider, S.D., Mordhorst, A.P., Romero-Severson, J., Cheng, J.C., Robey, J., Sung, Z.R., de Vries, S.C., and Ogas, J., PICKLE acts throughout the plant to repress expression of embryonic traits and may play a role in gibberellin-dependent responses, Plant Physiol., 2004, vol. 134, p. 995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Park, J., Oh, D.-H., Dassanayake, M., Nguyen, K.T., Ogas, J., Choi, G., and Sun, T.P., Gibberellin signaling requires chromatin remodeler PICKLE to promote vegetative growth and phase transitions, Plant Physiol., 2017, vol. 173, p. 1463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Li, M., An, F., Li, W., Ma, M., Feng, Y., Zhang, X., and Guo, H., DELLA proteins interact with FLC to repress flowering transition, J. Int. Plant Biol., 2016, vol. 58, p. 642.

    Article  CAS  Google Scholar 

  64. Yuan, W., Luo, X., Li, Z., Yang, W., Wang, Y., Liu, R., Du, J., and He, Y., A cis cold memory element and a trans epigenome reader mediate Polycomb silencing of FLC by vernalization in Arabidopsis, Natl. Genet., 2016, vol. 48, p. 1527.

    Article  CAS  Google Scholar 

  65. Gocal, G.F., Sheldon, C.C., Gubler, F., Moritz, T., Bagnall, D.J., MacMillan, C.P., Li, S.F., Parish, R.W., Dennis, E.S., Weigel, D., and King, R.W., GAMYB-like genes, flowering, and gibberellins signaling in Arabidopsis, Plant Physiol., 2001, vol. 127, p. 1682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Achard, P., Herr, A., Baulcombe, D.C., and Harberd, N.P., Modulation of floral development by a gibberellins regulated microRNA, Development, 2004, vol. 131, p. 3357.

    Article  CAS  PubMed  Google Scholar 

  67. Trivedi, D.K., Gill, S.S., and Tuteja, N., Abscisic acid (ABA): biosynthesis, regulation, and role in abiotic stress tolerance, in Abiotic Stress Response in Plants, Chichester: Wiley, 2016, ch. 15, p. 315.

    Google Scholar 

  68. Wang, Y., Li, L., Ye, T., Lu, Y., Chen, X., and Wu, Y., The inhibitory effect of ABA on floral transition is mediated by ABI5 in Arabidopsis, J. Exp. Bot., 2013, vol. 64, p. 675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Saez, A., Apostolova, N., Gonzalez-Guzman, M., Gonzalez-Garcia, M.P., Nicolas, C., Lorenzo, O., and Rodriguez, P.L., Gain-of-function and loss-of-function phenotypes of the protein phosphatase 2C HAB1 reveal its role as a negative regulator of abscisic acid signaling, Plant J., 2004, vol. 37, p. 354.

    Article  CAS  PubMed  Google Scholar 

  70. Saez, A., Rodrigues, A., Santiago, J., Rubio, S., and Rodriguez, P.L., HAB1–SWI3B interaction reveals a link between abscisic acid signaling and putative SWI/SNF chromatin-remodeling complexes in Arabidopsis, Plant Cell, 2008, vol. 20, p. 2972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Liu, X., Zhou, C., Zhao, Y., and Zhou, S., The rice enhancer of zeste [E(z)] genes SDG711 and SDG718 are respectively involved in long day and short day signaling to mediate the accurate photoperiod control of flowering time, Front. Plant Sci., 2014, vol. 5, p. 591.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Zhao, X.L., Shi, Z.Y., Peng, L.T., Shen, G.Z., and Zhang, J.L., An atypical HLH protein OsLF in rice regulates flowering time and interacts with OsPIL13 and OsPIL15, New Biotechnol., 2011, vol. 28, p. 797.

    Article  CAS  Google Scholar 

  73. Reyes, J.L. and Chua, N.H., ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination, Plant J., 2007, vol. 49, p. 606.

    Article  CAS  Google Scholar 

  74. Liu, P.P., Montgomery, T.A., Fahlgren, N., Kasschau, K.D., Nonogaki, H., and Carrington, J.C., Repression of AUXIN RESPONSE FACTOR 10 by microRNA160 is critical for seed germination and post-germination stages, Plant J., 2007, vol. 52, p. 133

    Article  CAS  PubMed  Google Scholar 

  75. Crèvecoeur, M., Penel, C., Greppin, H., and Gaspar, T., The role of ethylene in the transition from vegetative growth to flowering: a reassessment, J. Exp. Bot., 2004, vol. 38, p. 43.

    Google Scholar 

  76. Cong, H., Li, Z., and Xu, L., Characterizing developmental and inducible differentiation between juvenile and adult plants of Aechmea fasciata treated with ethylene by transcriptomic analysis, Plant Growth Regul., 2013, vol. 69, p. 247.

    Article  CAS  Google Scholar 

  77. Wu, K., Zhang, L., Zhou, C., Yu, C.W., and Chaikam, V., HDA6 is required for jasmonate response, senescence and flowering in Arabidopsis, J. Exp. Bot., 2008, vol. 59, p. 225.

    Article  CAS  PubMed  Google Scholar 

  78. Ma, N., Xue, J., Li, Y., Liu, X., Dai, F., Jia, W., Luo, Y., and Gao, J., Rh-PIP2;1, a rose aquaporin gene, is involved in ethylene regulated petal expansion, Plant Physiol., 2008, vol. 148, p. 894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Khurana, J.P. and Cleland, C.F., Role of salicylic acid and benzoic acid in flowering of a photoperiod-insensitive strain, Lemna paucicostata LP6, Plant Physiol., 1992, vol. 100, p. 1541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Wada, K.C. and Takeno K., Stress-induced flowering, Plant Signaling Behav., 2010, vol. 5, p. 944.

    Article  Google Scholar 

  81. Martínez, C., Pons, E., Prats, G., and León, J., Salicylic acid regulated flowering time and link defense responses and reproductive development, Plant J., 2004, vol. 37, p. 209.

    Article  PubMed  CAS  Google Scholar 

  82. Widemann, E., Smirnova, E., Aubert, Y., Miesch, L., and Heitz, T., Dynamics of jasmonate metabolism upon flowering and across leaf stress responses in Arabidopsis thaliana, Plants, 2016, vol. 5, p. 4.

    Article  PubMed Central  CAS  Google Scholar 

  83. Xie, D.X., Feys, B.F., James, S., Nieto-Rostro, M., and Turner, J.G., COI1: An Arabidopsis gene required for jasmonate regulated defense and fertility, Science, 1998, vol. 280, p. 1091

    Article  CAS  PubMed  Google Scholar 

  84. Cai, Q., Yuan, Z., Chen, M., Yin, C., Luo, Z., Zhao, X., Liang, W., Hu, J., and Zhang, D., Jasmonic acid regulates spikelet development in rice, Nat. Commun., 2014, vol. 5, p. 1.

    Article  Google Scholar 

  85. Acosta, I.F., Laparra, H., Romero, S.P., Schmelz, E., Hamberg, M., Mottinger, J.P., Moreno, M.A., and Dellaporta, S.L., Tasselseed1 is a lipoxygenase affecting jasmonic acid signaling in sex determination of maize, Science, 2009, vol. 323, p. 262.

    Article  CAS  PubMed  Google Scholar 

  86. Li, L., Zhao, Y., McCaig, B.C., Wingerd, B.A., Wang, J., Whalon, M.E., Pichersky, E., and Howe, G.A., The tomato homolog of CORONATINE-INSENSITIVE1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development, Plant Cell, 2004, vol. 16, p. 126.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Wasternack, C., Forner, S., Strnad, M., and Hause, B., Jasmonates in flower and seed development, Biochimie, 2013, vol. 95, p. 79.

    Article  CAS  PubMed  Google Scholar 

  88. Nagpal, P., Ellis, C.M., Weber, H., Ploense, S.E., Barkawi, L.S., Guilfoyle, T.J., Hagen, G., Alonso, J.M., Cohen, J.D., Farmer, E.E., and Ecker, J.R., Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation, Development, 2005, vol. 132, p. 4107.

    Article  CAS  PubMed  Google Scholar 

  89. Gutierrez, L., Bussell, J.D., and Păcurar, D.I., Phenotypic plasticity of adventitious rooting in Arabidopsis is controlled by complex regulation of AUXIN RESPONSE FACTOR transcripts and microRNA abundance, Plant Cell, 2009, vol. 21, p. 3119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Shinozaki, M., Swe, K.L., and Takimoto, A., Varietal difference in the ability to flower in response to poor nutrition and its correlation with chlorogenic acid accumulation in Pharbitis nil, Plant Cell Physiol., 1988, vol. 29, p. 611.

    CAS  Google Scholar 

  91. Liu, T., Li, Y., Ren, J., Qian, Y., Yang, X., Duan, W., and Hou, X., Nitrate or NaCl regulates floral induction in Arabidopsis thaliana, Biologia, 2013, vol. 68, p. 215.

    Article  CAS  Google Scholar 

  92. Rossiter, R.C., Phosphorus deficiency and flowering in subterranean clover (T. subterraneum L.), Ann. Bot., 1978, vol. 42, p. 325.

    Article  CAS  Google Scholar 

  93. Petraglia, A., Tomaselli, M., Mondoni, A., Brancaleoni, L., and Carbognani, M., Effects of nitrogen and phosphorus supply on growth and flowering phenology of the snowbed forb Gnaphalium supinum L., Funct. Ecol., 2014, vol. 209, p. 271.

    Google Scholar 

  94. Korves, T.M. and Bergelson, J., A developmental response to pathogen infection in Arabidopsis, Plant Physiol.,2003, vol. 133, p. 339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lyons, R., Stiller, J., Powell, J., Manners, J.M., and Kazan, K., Investigating the association between flowering time and defense in the Arabidopsis thalianaFusarium oxysporum interaction, PLoS One, 2015, vol. 10, p. e0127699.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Poupin, M.J., Timmermann, T., Vega, A., Zuñiga, A., and González, B., Effects of the plant growth-promoting bacterium Burkholderia phytofirmans PsJN throughout the life cycle of Arabidopsis thaliana, PLoS One, 2013, vol. 8, p. e69435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Jordan, C., Ally, D., and Hodgins, K., When can stress facilitate divergence by altering time to flowering? Ecol. Evol., 2015, vol. 5, p. 5962.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Yang, M., Wu, Y., Jin, S., Hou, J., Mao, Y., Liu, W., Shen, Y., and Wu, L., Flower bud transcriptome analysis of Sapium sebiferum (Linn.) Roxb. and primary investigation of drought induced flowering: pathway construction and G-quadruplex prediction based on transcriptome, PLoS One, 2015, vol. 10, p. e0118479.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Blits, K.C. and Gallagher, J.L., Morphological and physiological responses to increased salinity in marsh and dune ecotypes of Sporobolus virginicus (L.) Kunth., Oecologia, 1991, vol. 87, p. 330.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Kumar.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Choudhary, A., Kaur, N. et al. Wake Up: it’s Time to Bloom. Russ J Plant Physiol 68, 579–595 (2021). https://doi.org/10.1134/S1021443721040075

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443721040075

Keywords:

Navigation