Skip to main content
Log in

Low-Temperature Adaptation of Winter Wheat Seedlings under Excessive Zinc Content in the Root Medium

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Cold adaptation of winter wheat (Triticum aestivum L.) seedlings was investigated under excessive zinc content (1000 μM) in the root medium. The ability to adapt to chilling temperatures (4°C) in seedlings exposed over seven days to excessive Zn concentrations was lower than in seedlings exposed to optimal composition of mineral nutrients. The impaired adaptation capacity was evident from the lowered content of photosynthetic pigments in leaves, the decreased stomatal conductance, and the reduced water content in shoot tissues. The negative influence of low temperature on plant physiological parameters was enhanced with the prolongation of cold exposure under Zn excess in the root medium, unlike the alleviation of cold-induced disorders during prolonged chilling under optimal Zn concentration (2 μM). Based on this study, we propose that inhibition of photosynthesis and the disturbance of plant water balance are the main factors that impair the low-temperature adaptation of seedlings exposed to high zinc concentrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Titov, A.F., Akimova, T.V., Talanova, V.V., and Topchieva, L.V., Ustoichivost’ rastenii v nachal’nyi period deistviya neblagopriyatnykh temperatur (Plant Resistance during the Initial Period of Unfavorable Temperatures), Moscow: Nauka, 2006.

  2. Trunova, T.I., Rastenie i nizkotemperaturnyi stress. 64‑e Timiryazevskoe chtenie (Plant and Low Temperature Stress, the 64th Timiryazev Lecture), Moscow: Nauka, 2007.

  3. Wise, R.R., McWilliam, J., and Naylor, A.W., A comparative study of low-temperature-induced ultrastructural alterations of three species with differing chilling sensitivities, Plant Cell Environ., 1983, vol. 6, pp. 525–535.

    Article  Google Scholar 

  4. McWilliam, J.R. and Naylor, A.W., Temperature and plant adaptation. I. Interaction of temperature and light in the synthesis of chlorophyll in corn, Plant Physiol., 1967, vol. 42, pp. 1711–1715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wang, X.W., Zhao, M., Mao, Z.J., Zhu, S.Y., Zhang, D.L., and Zhao, X.Z., Combination of elevated CO2 concentration and elevated temperature and elevated temperature only promote photosynthesis of Quercus mongolica seedlings, Russ. J. Plant Physiol., 2008, vol. 55, pp. 54–58.

    Article  CAS  Google Scholar 

  6. Hakala, K. and Mela, T., The effects of prolonged exposure to elevated temperatures and elevated CO2 levels on the growth, yield and dry matter partitioning of the field-sown meadow fescue, Agric. Food Sci. Finl., 1996, vol. 5, pp. 285–298.

    Article  Google Scholar 

  7. Drozdov, S.N. and Kurets, V.K., Nekotorye aspekty ekologicheskoi fiziologii rastenii (Some Aspects of Plants Ecological Physiology), Petrozavodsk: Petrozavod. Gos. Univ., 2003.

  8. Polesskaya, O.G., Kashirina, E.I., and Alekhina, N.D., Changes in the activity of antioxidant enzymes in wheat leaves and roots as a function of nitrogen source and supply, Russ. J. Plant Physiol., 2004, vol. 51, pp. 615–620.

    Article  CAS  Google Scholar 

  9. Dobrovol'skii, V.V., Main characteristics of zinc and cadmium biochemistry, in Tsink i kadmii v okruzhayushchei srede (Zinc and Cadmium in the Environment), Moscow: Nauka, 1992, pp. 7–18.

  10. Broadley, M.R., White, P.J., Hammond, J.P., Zelko, I., and Lux, A., Zinc in plants, New Phytol., 2007, vol. 173, pp. 677–702.

    Article  CAS  PubMed  Google Scholar 

  11. Kaznina, N.M., Batova, Yu.V., Laidinen, G.F., and Titov, A.F., Influence of zinc on growth and photosynthetic apparatus of wheat plants in conditions of optimum and hypothermia, Tr. Karel. Nauch. Tsentra, Ross. Akad. Nauk, Ser. Exp. Biol., 2017, no. 12, pp. 118–124.

  12. Klimov, S.V., Bioenergy concept of plant adaptation to low temperatures, Usp. Sovrem. Biol., 1997, vol. 117, no. 2, pp. 133–154.

    CAS  Google Scholar 

  13. Titov, A.F., Venzhik, Yu.V., Talanova, V.V., Frolova, S.A., Talanov, A.V., and Nazarkina, E.A., Nature and sequence of changes in photosynthetic apparatus of winter wheat plants under cold hardening conditions, Tr. Karel. Nauch. Tsentra, Ross. Akad. Nauk, Ser. Exp. Biol., 2009, no. 3, pp. 93–97.

  14. Astakhova, N.V., Popov, V.N., Selivanov, A.A., Burakhanova, E.A., Alieva, G.P., and Moshkov, I.E., Reorganization of chloroplast ultrastructure associated with low-temperature hardening of Arabidopsis plants, Russ. J. Plant Physiol., 2014, vol. 61, pp. 744–750.

    Article  CAS  Google Scholar 

  15. Liu, Z.G., Sun, W.C., Zhao, Y.N., Li, X.C., Fang, Y., Wu, J.Y., Zeng, X.C., Yang, N.N., Wang, Y., and He, L., Effect of low nocturnal temperature on photosynthetic characteristics and chloroplast ultrastructure of winter rapeseed, Russ. J. Plant Physiol., 2016, vol. 63, pp. 451–460.

    Article  CAS  Google Scholar 

  16. Song, A., Li, P., Fan, F., Li, Z., and Liang, Y., The effect of silicon on photosynthesis and expression of its relevant genes in rice (Orysa sativa L.) under high-zinc stress, PLoS One, 2014, vol. 9, no. 11: e113782. https://doi.org/10.1371/jornal.pone

  17. Glińska, S., Gapińska, M., Michlewska, S., Skiba, E., and Kubicki, J., Analysis of Triticum aestivum seedling response to excess of zinc, Protoplasma, 2016, vol. 253, pp. 367–377.

  18. Trunova, T.I. and Astakhova, N.V., The role of cell ultrastructure in the formation of frost-resistant winter wheat, Dokl. Akad. Nauk, 1998, vol. 359, pp. 120–122.

    CAS  Google Scholar 

  19. Venzhik, Yu.V., Talanova, V.V., Titov, A.F., and Miroslavov, E.A., The ultrastructure of wheat chloroplasts (Triticum aestivum L.) under cold adaptation and the action of abscisic acid, Tr. Karel. Nauch. Tsentra, Ross. Akad. Nauk, Ser. Exp. Biol., 2014, no. 5, pp. 102–107.

  20. Monnet, F., Vaillant, N., Vernay, P., Coudret, A., Sallanon, H., and Himi, A., Relationship between PSII activity, CO2 fixation, and Zn, Mn and Mg contents of Lolium perenne under zinc stress, J. Plant Physiol., 2001, vol. 158, pp. 1137–1144.

    Article  CAS  Google Scholar 

  21. Vassilev, A., Nikolova, A., Koleva, L., and Lidon, F., Effects of excess Zn on growth and photosynthetic performance of young bean plants, J. Phytol., 2011, vol. 3, pp. 58–62.

    CAS  Google Scholar 

  22. Li, X., Yang, Y., Jia, L., Chen, H., and Wei, X., Zinc-induced oxidative damage, antioxidant enzyme response and proline metabolism in roots and leaves of wheat plants, Ecotoxicol. Environ. Saf., 2013, vol. 89, pp. 150–157.

    Article  CAS  PubMed  Google Scholar 

  23. Popov, V.N., Antipina, O.V., Pchelkin, V.P., and Tsydendambaev, V.D., Changes in fatty acid composition of lipids in chloroplast membranes of tobacco plants during cold hardening, Russ. J. Plant Physiol., 2017, vol. 64, pp. 156–161.

    Article  CAS  Google Scholar 

  24. Reynolds, M.P., Mujeeb-Kasi, A., and Sawkins, M., Prospects for utilizing plant-adaptive mechanisms to improve wheat and other crops in drought- and salinity-prone environments, Ann. Appl. Biol., 2005, vol. 146, pp. 239–259.

    Article  CAS  Google Scholar 

  25. Chatterjee, J. and Chatterjee, C., Phytotoxicity of cobalt, chromium and copper in cauliflower, Environ. Pollut., 2000, vol. 109, pp. 69–74.

    Article  CAS  PubMed  Google Scholar 

  26. Kholodova, V., Volkov, K., Abdeyeva, A., and Kuznetsov, Vl., Water status in Mesembryanthemum crystallinum under heavy metal stress, Environ. Exp. Bot., 2011, vol. 71, pp. 382–389.

    CAS  Google Scholar 

  27. Sergeant, K., Kieffer, P., Dommes, J., Hausman, J.-F., and Renaut, J., Proteomic changes in leaves of poplar exposed to cadmium and low-temperature, Environ. Exp. Bot., 2014, vol. 106, pp. 112–123.

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Drs. N.A. Galibina and K.M. Nikerova (Institute of Forestry, Karelian Research Center, Russian Academy of Sciences) for the help in determination of zinc content in plants.

Funding

The study was supported by the federal budget allocated for the state program no. 0218-2019-0074.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. M. Kaznina.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by A. Bulychev

Abbreviations: PAR—photosynthetically active radiation; PSA—photosynthetic apparatus; PSII—photosystem II.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaznina, N.M., Batova, Y.V., Laidinen, G.F. et al. Low-Temperature Adaptation of Winter Wheat Seedlings under Excessive Zinc Content in the Root Medium. Russ J Plant Physiol 66, 763–770 (2019). https://doi.org/10.1134/S1021443719050091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443719050091

Keywords:

Navigation