Skip to main content
Log in

Short-Term Impact of a Permanent Magnetic Field on the Physiological, Morphological, and Biochemical Characteristics of Amaranthus retroflexus, Agastache rugosa, and Thlaspi arvense Seedlings

  • RESEARCH PAPERS
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The physiological, morphological, and biochemical characteristics of seedlings of common amaranth (Amaranthus retroflexus L.), blue licorice (Agastache rugosa (Fisch. & C.A. Mey.)), and field pennycress (Thlaspi arvense L.) after a 6-h exposure of their germinating seeds to a permanent magnetic field with induction of 50, 80, 100, and 120 μT were studied. The conducted studies showed that the studied range of magnetic field intensities does not affect the shoot and rootlet length of seedlings in comparison with the control values. Wave-like changes in biochemical parameters (concentrations of flavonoids, malonic dialdehyde, sums of low-molecular weight antioxidants, sums of saturated and unsaturated fatty acids, activity of peroxidase and superoxide dismutase enzymes) in the seedlings of the three plants studied after 6-h treatment of their seeds with a permanent magnetic field was shown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Shashurin, M.M., Effects of the action of technogenic electromagnetic radiation and fields on living organisms, Nauka i Obrazovanie, 2015, no. 3, pp. 83–89.

  2. Krivoshein, D.A., Muravei, L.A., and Roeva, N.N., Ekologiya i bezopasnost’ zhiznedeyatel’nosti (Ecology and Life Safety), Moscow: YuNITI-DANA, 2002.

  3. Nasurlaeva, Z.Yu., Effect of an artificial electromagnetic field on seedling growth, Sovrem. Naukoemkie Tekhnol., 2009, no. 2, pp. 7–11.

  4. Belyachenko, Yu.A., Usanov, A.D., Tyrnov, V.S., and Usanov, D.A., Extinction of meristem mitotic activity stimulation with an increase in the shelf life of dry seeds under a low-frequency magnetic field exposure, Byull. Bot. Sada Saratov Univ., 2010, no. 9, pp. 135–138.

  5. Shashurin, M.M., Prokop’ev, I.A., Shein, A.A., Filippova, G.V., and Zhuravskaya, A.N., Physiological responses of Plantago media to electromagnetic field of power-line frequency (50 Hz), Russ. J. Plant Physiol., 2014, vol. 61, pp. 484–488.

    Article  CAS  Google Scholar 

  6. Peñuelas, J., Llusià, J., Martínez, B., and Fontcuberta, J., Diamagnetic susceptibility and root growth responses to magnetic fields in Lens culinaris, Glycine soja, and Triticum aestivum, Electromagn. Biol. Med., 2004, vol. 23, pp. 97–112.

  7. Rǎcuciu, M., Influence of extremely low frequency magnetic field on assimilatory pigments and nucleic acids in Zea mays and Cucurbita pepo seedlings, Rom. Biotechnol. Lett., 2012, vol. 17, pp. 7662–7672.

  8. Dhawi, F., Al-Khayri, J.M., and Essam, H., Static magnetic field influence on elements composition in date palm (Phoenix dactylifera L.), Res. J. Agric. Biol. Sci., 2009, vol. 5, pp. 161–166.

    CAS  Google Scholar 

  9. Belyavskaya, N.A., Biological effects due to weak magnetic field on plants, Adv. Space Res., 2004, vol. 34, pp. 1566–1574.

    Article  CAS  PubMed  Google Scholar 

  10. Huang, H.H. and Wang, S.R., The effects of 60 Hz magnetic fields on plant growth, Nat. Sci., 2007, vol. 5, no. 1, pp. 60–68.

    Google Scholar 

  11. Shabrangi, A. and Majd, A., Effect of magnetic fields on growth and antioxidant systems in agricultural plants, PIERS Proc. (Bejing), 2009, pp. 23–27.

  12. Matveev, A.N., Elektrichestvo i magnetizm (Electricity and Magnetics), Moscow: Oniks, 2005.

  13. Shashurin, M.M., Effect of pre-sowing treatment of Allium fistulosium L. seeds with a static magnetic field on the physiological and biochemical characteristics of seedlings, Nauka i Obrazovanie, 2016, vol. 84, no. 4, pp. 119–123.

    Google Scholar 

  14. Giannopolitis, C.N. and Ries, S.K., Superoxide dismutases: I. Occurrence in higher plants, Plant Physiol., 1977, vol. 59, pp. 309–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lebedeva, O.V., Ugarova, N.N., and Berezin, I.V., Kinetic study of (o)-dianisidine oxidation by hydrogen peroxide in the presence of horseradish peroxidase, Biokhimiya, 1977, vol. 42, pp. 1372–1379.

    CAS  Google Scholar 

  16. Ermakov, A.I., Metody biokhimicheskogo issledovaniya rastenii (Methods for Biochemical Investigations of Plants), Leningrad: Agropromizdat, 1987.

  17. Vladimirov, Yu.A. and Archakov, A.I., Perekisnoe okislenie lipidov v biologicheskikh membranakh (Lipid Peroxidation in Biological Membranes), Moscow: Nauka, 1972.

  18. Miquel, M. and Browse, J., Arabidopsis mutants deficient in polyunsaturated fatty acid synthesis. Biochemical and genetic characterization of a plant oleoyl-phosphatidylcholine desaturase, J. Biol. Chem., 1992, vol. 267, no. 3, pp. 1502–1509.

    CAS  PubMed  Google Scholar 

  19. Sleptsov, I.V. and Zhuravskaya, A.N., Dynamics of flavonoids accumulation in the leaves of Amaranthus re-troflexus, Agastache rugosa and Thlaspi arvense gathered in the Central Yakutia, Khim. Rastit. Syr’ya, 2016, no. 3, pp. 67–72.

  20. Lakin, G.F., Biometriya (Biometry), Moscow: Vyssh. Shk., 1980.

    Google Scholar 

  21. Galland, P. and Pazur, A., Magnetoreception in plants, J. Plant Res., 2005, vol. 118, no. 6, pp. 371–389.

    Article  PubMed  Google Scholar 

  22. Burlakova, E.B., Konradov, A.A., and Mal’tseva, E.L., Action of super-small doses of biologically active substances and lowly intensive physical factors, Chem. Phys., 2003, vol. 22, no. 2, pp. 21–40.

    CAS  Google Scholar 

  23. Wang, H.Y., Zeng, X.B., Guo, S.Y., and Li, Z.T., Effects of magnetic field on the antioxidant defense system of recirculation-cultured Chlorella vulgaris, Bio-electromagnetics, 2008, vol. 29, no. 1, pp. 39–46.

    Google Scholar 

  24. Kalinova, J. and Dadakova, E., Rutin and total quercetin content in amaranth (Amaranthus spp.), Plant Foods Hum. Nutr., 2009, vol. 64, no. 1, pp. 68–74.

    Article  CAS  PubMed  Google Scholar 

  25. Vogelmann, J.E., Flavonoids of Agastache section Agastache, Biochem. Syst. Ecol., 1984, vol. 12, no. 4, pp. 363–366.

    Article  CAS  Google Scholar 

  26. Llugany, M., Tolrà, R., Martín, S.R., Poschenrieder, C., and Barcelö, J., Cadmium-induced changes in glutathione and phenolics of Thlaspi and Noccaea species differing in Cd accumulation, J. Plant Nutr. Soil Sci., 2013, vol. 176, no. 6, pp. 851–858.

    Article  CAS  Google Scholar 

  27. Pazur, A., Schimek, C., and Galland, P., Magnetoreception in microorganisms and fungi, Open Life Sci., 2007, vol. 2, no. 4, pp. 597–659.

    CAS  Google Scholar 

  28. Lee, B.C., Johng, H.M., Lim, J.K., Jeong, J.H., Baik, K.Y., Nam, T.J., Lee, J.H., Kim, J., Sohn, U.D., Yoon, G., Shin, S., and Soh, K.S., Effects of extremely low frequency magnetic field on the antioxidant defense system in mouse brain: a chemiluminescence study, J. Photochem. Photobiol. B: Biol., 2004, vol. 73, no. 1, pp. 43–48.

    Article  CAS  Google Scholar 

  29. Novitskii, Yu.I., Lipid composition as an indicator of the effect of a weak permanent magnetic field on plants, Mater. III S’ezda biofizikov Rossii, Tezisy dokladov (III Congr. of Biophysics of Russia, Abstracts of Papers), Moscow, 2004, vol. 2, pp. 692–693.

Download references

ACKNOWLEDGMENTS

The work was carried out within the framework of SS VI.62.1. “Development of Biological Products from Tissues of Plants and Animals of Yakutia on the Basis of Studying the Features of Their Biochemical Composition and Mechanisms of Adaptation to the Conditions of the North” (state registration no. AAAA-A17-117020110055-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Zhuravskaya.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by M. Shulskaya

Abbreviations: LMWA—low molecular weight antioxidants; POX—peroxidase; SOD—superoxide dismutase; T—Tesla.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sleptsov, I.V., Shashurin, M.M. & Zhuravskaya, A.N. Short-Term Impact of a Permanent Magnetic Field on the Physiological, Morphological, and Biochemical Characteristics of Amaranthus retroflexus, Agastache rugosa, and Thlaspi arvense Seedlings. Russ J Plant Physiol 66, 95–101 (2019). https://doi.org/10.1134/S1021443718050151

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443718050151

Keywords:

Navigation