Skip to main content
Log in

Effects of pH on the Submerged Macrophyte Hydrilla verticillata

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Hydrilla verticillata (L.f.) Royle is widely distributed and protects the water environment mainly by serving as a potential heavy metal hyperaccumulator. Hydroponic experiments were performed to investigate the biochemical responses of the leaves and stems of H. verticillata at pH values of 5.5, 6.5, 7.5, 8.5, and 9.5 for 7, 14, and 21 days. The results showed that a weak alkaline environment (pH 8.5) promoted plant growth and that an acidic environment (pH 5.5, 6.5) adversely affected normal metabolism. The malondialdehyde content and three antioxidant enzyme activities changed in a similar pattern after the pH treatments: varying increases occurred following all pH treatments with the exception of pH 8.5. The activities of the three N metabolism enzymes briefly increased in an acidic environment and then sharply decreased compared to the control. The ROS-scavenging mechanisms and N metabolism mechanisms in H. verticillata worked together to respond to pH-induced effects. Based on the interplay between antioxidant enzymes and N metabolism enzymes, H. verticillata could defend against the toxicity induced by an acidic environment for approximately seven days and demonstrate stronger adaptability to the alkaline environment. Depending on the growth status and the synergistic effects of the enzymes, an optimum pH of 8.5 for H. verticillata was found in our experiment. Thus, these characteristics reveal a better understanding of this species so that it can be effectively controlled and better referenced for phytoremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fernández-Zamudio, R., García-Murillo, P., and Díaz-Paniagua, C., Aquatic plant distribution is driven by physical and chemical variables and hydroperiod in a Mediterranean temporary pond network, Hydrobiologia, 2016, vol. 774, pp. 123–135.

    Article  Google Scholar 

  2. Verhofstad, M.J.J.M., Poelen, M.D.M., van Kempen, M.M.L., Bakker, E.S., and Smolders, A.J.P., Finding the harvesting frequency to maximize nutrient removal in a constructed wetland dominated by submerged aquatic plants, Ecol. Eng., 2017, vol. 106, pp. 423–430.

    Article  Google Scholar 

  3. Parzych, A., Sobisz, Z., and Cymer, M., Preliminary research of heavy metals content in aquatic plants taken from surface water (Northern Poland), Desalin. Water Treat., 2016, vol. 57, pp. 1451–1461.

    Article  CAS  Google Scholar 

  4. Rybicki, N.B. and Landwehr, J.M., Long-term changes in abundance and diversity of macrophyte and waterfowl populations in an estuary with exotic macrophytes and improving water quality, Limnol. Oceanogr., 2007, vol. 52, pp. 1195–1207.

    Article  Google Scholar 

  5. Langeland, K.A., Hydrilla verticillata (L.F.) Royle (Hydrocharitaceae), “The Perfect Aquatic Weed,” Castanea, 1996, vol. 61, pp. 293–304.

    Google Scholar 

  6. Sousa, W.T.Z., Hydrilla verticillata (Hydrocharitaceae), a recent invader threatening Brazil’s freshwater environments: a review of the extent of the problem, Hydrobiologia, 2011, vol. 669, pp. 1–20.

    Article  Google Scholar 

  7. Chen, M., Zhang, L.L., Tuo, Y.C., He, X.J., Li, J., and Song, Y., Treatability thresholds for cadmium-contaminated water in the wetland macrophyte Hydrilla verticillata (L.F.) Royle, Ecol. Eng., 2016, vol. 6, pp. 178–186.

    Article  Google Scholar 

  8. Huang, L.Z., Zeng, G.M., Huang, D.L., Li, L.F., Du, C.Y., and Zhang, L., Biosorption of cadmium (II) from aqueous solution onto Hydrilla verticillata, Environ. Earth Sci., 2010, vol. 60, pp. 1683–1691.

    Article  CAS  Google Scholar 

  9. Gao, H., Song, Y., Lv, C., Chen, X., Yu, H., Peng, J., and Wang, M., The possible allelopathic effect of Hydrilla verticillata on phytoplankton in nutrient-rich water, Environ. Earth Sci., 2015, vol. 73, pp. 5141–5151.

    Article  CAS  Google Scholar 

  10. Wu, J., Cheng, S., Liang, W., and Wu, Z., Effects of organic-rich sediment and below-ground sulfide exposure on submerged macrophyte, Hydrilla verticillata, Bull. Environ. Contam. Toxicol., 2009, vol. 83, pp. 497–501.

    Article  PubMed  CAS  Google Scholar 

  11. Chathuranga, P.D., Dissanayake, D.M.R.E.A., Priyantha, N., Iqbal, S.S., and Iqbal, M.C.M., Biosorption and desorption of lead (II) by Hydrilla verticillata, Bioremediat. J., 2014, vol. 18, pp. 192–203.

    Article  CAS  Google Scholar 

  12. Sedmak, J.J. and Grossberg, S.E., A rapid, sensitive, and versatile assay for protein using Coomassie brilliant blue G250, Anal. Biochem., 1977, vol. 79, pp. 544–552.

    Article  PubMed  CAS  Google Scholar 

  13. Heath, R.L. and Packer, L., Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation, Arch. Biochem. Biophys., 1968, vol. 125, pp. 189–198.

    Article  PubMed  CAS  Google Scholar 

  14. Beauchamp, C. and Fridovich, I., Superoxide dismutase: improved assays and an assay applicable to acrylamide gels, Anal. Biochem., 1971, vol. 44, pp. 276–287.

    Article  PubMed  CAS  Google Scholar 

  15. Johansson, L.H. and Borg, L.H., A spectrophotometric method for determination of catalase activity in small tissue samples, Anal. Biochem., 1988, vol. 174, pp. 331–336.

    Article  PubMed  CAS  Google Scholar 

  16. Sakharov, I.Y. and Ardila, G.B., Variations of peroxidase activity in cocoa (Theobroma cacao L.) beans during their ripening, fermentation and drying, Food Chem., 1999, vol. 65, pp. 51–54.

    Article  CAS  Google Scholar 

  17. Losada, M. and Paneque, A., Nitrite reductase, Methods Enzymol., 1971, vol. 23, pp. 487–491.

    Article  Google Scholar 

  18. Groat, R.G. and Vance, C.P., Root nodule enzymes of ammonia assimilation in alfalfa (Medicago sativa L.): developmental patterns and response to applied nitrogen, Plant Physiol., 1981, vol. 67, pp. 1198–1203.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Duman, F. and Ozturk, F., Nickel accumulation and its effect on biomass, protein content and antioxidative enzymes in roots and leaves of watercress (Nasturtium officinale R. Br.), J. Environ. Sci., 2010, vol. 22, pp. 526–532.

    Article  CAS  Google Scholar 

  20. Al-Gabr, H.M., Ye, C., Zhang, Y., Khan, S., Lin, H., and Zheng, T., Effects of carbon, nitrogen and pH on the growth of Aspergillus parasiticus and aflatoxins production in water, J. Environ. Biol., 2013, vol. 34, pp. 353–358.

    PubMed  CAS  Google Scholar 

  21. Singh, K. and Pandey, S.N., Effect of nickel-stresses on uptake, pigments and antioxidative responses of water lettuce, Pistia stratiotes L., J. Environ. Biol., 2011, vol. 32, pp. 391–394.

    PubMed  CAS  Google Scholar 

  22. Srivastava, S., Mishra, S., Tripathi, R.D., Dwivedi, S., and Gupta, D.K., Copper-induced oxidative stress and responses of antioxidants and phytochelatins in Hydrilla verticillata (L.F.) Royle, Aquat. Toxicol., 2006, vol. 80, pp. 405–415.

    Article  PubMed  CAS  Google Scholar 

  23. Singh, A., Kumar, C.S., and Agarwal, A., Effect of lead and cadmium on aquatic plant Hydrilla verticillata, J. Environ. Biol., 2013, vol. 34, pp. 1027–1031.

    PubMed  CAS  Google Scholar 

  24. Anh, B.K., Kim, D.O., Kuschk, P., Tua, T.V., Hue, N.T., and Minhl, N.N., Effect of soil pH on As hyperaccumulation capacity in fern species, Pityrogramma calomelanos, J. Environ. Biol., 2013, vol. 34, pp. 237–242.

    PubMed  Google Scholar 

  25. Mokhele, B., Zhan, X., Yang, G., and Zhang, X., Nitrogen assimilation in crop plants and its affecting factors, Can. J. Plant Sci., 2012, vol. 92, pp. 399–405.

    Article  CAS  Google Scholar 

  26. Gupta, P., Srivastava, S., and Seth, C.S., 24-Epibrassinolide and sodium nitroprusside alleviate the salinity stress in Brassica juncea L. cv. Varuna through cross talk among proline, nitrogen metabolism and abscisic acid, Plant Soil, 2017, vol. 411, pp. 483–498.

    Article  CAS  Google Scholar 

  27. Cooper, A.J., The role of glutamine synthetase and glutamate dehydrogenase in cerebral ammonia homeostasis, Neurochem. Res., 2012, vol. 37, pp. 2439–2455.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Dinakar, N., Nagajyothi, P.C., Suresh, S., Damodharam, T., and Suresh, C., Cadmium induced changes on proline, antioxidant enzymes, nitrate and nitrite reductases in Arachis hypogaea L., J. Environ. Biol., 2009, vol. 30, pp. 289–294.

    CAS  Google Scholar 

  29. Zhang, L.L., He, X.J., Chen, M., An, R.D., An, X.L., and Li, J., Responses of nitrogen metabolism to copper stress in Luffa cylindrica roots, J. Soil Sci. Plant Nutr., 2014, vol. 14, pp. 616–624.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. -L. Zhang.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, Y., He, X.J., Chen, M. et al. Effects of pH on the Submerged Macrophyte Hydrilla verticillata. Russ J Plant Physiol 65, 611–619 (2018). https://doi.org/10.1134/S1021443718040179

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443718040179

Keywords

Navigation