Skip to main content
Log in

Multi-Wall Carbon Nanotubes Effects on Plant Seedlings Growth and Cadmium/Lead Uptake In Vitro

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The effects of multi-wall carbon nanotubes (MWCNTs) on plant growth and Cd/Pb accumulation was investigated on seedlings of three plant species including Brassica napus L., Helianthus annus L. and Cannabis sativa L. The experiment consisted of MWCNTs on three concentration levels (0, 10, 50 mg/L) and 200 μM CdCl2 or 500 μM Pb(NO3)2. MWCNTs application effectively improved root and shoot growth inhibited by Cd and Pb salts. In B. napus, total chlorophyll (Chl) content increased by both MWCNTs 10 and 50 mg/L exposure under cadmium or lead stress. MWCNT 10 mg/L mitigated the deleterious effects of Cd ions on total chlorophyll content of H. annus and C. sativa. Wherease higher concentration of MWCNTs decreased Chl content under either Cd or Pb treatments on sunflower seedlings. MWCNT10 effectivly raised cadmium accumulation in seedlings of all three species. MWCNT10 and 50 mg/L also caused higher Pb accumulation in canola and cannabis seedlings, respectively. Based on the results, it seems that the effects of MWCNTs on growth parameters and heavy metal accumulation in plant seedlings is strongly depends on heavy metal type, MWCNTs concentration and plant species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CNT:

carbon nanotube

MWCNTs:

multi-wall carbon nanotubes

SWCNTs:

single-wall carbon nanotubes

References

  1. El-Temsah, Y.S. and Joner, E.J., Effects of nano-sized zero-valent iron (nZVI) on DDT degradation in soil and its toxicity to collembola and ostracods, Chemosphere, 2013, vol. 92, pp. 131–137.

    Article  CAS  PubMed  Google Scholar 

  2. Nair, R., Varghese, S.H., Nair, B.G., Maekawa, T., Yoshida, Y., and Kumar, D.S., Nanoparticulate material delivery to plants, Plant Sci., 2010, vol. 179, pp. 154–163.

    Article  CAS  Google Scholar 

  3. Liu, Q., Chen, B., Wang, Q., Shi, X., Xiao, Z., Lin, J., and Fang, X., Carbon nanotubes as molecular transporters for walled plant cells, Nano Lett., 2009, vol. 9, pp. 1007–1010.

    Article  CAS  PubMed  Google Scholar 

  4. González-Melendi, P.S., Fernández-Pacheco, R., Coronado, M.J., Corredor, E., Testillano, P., Risueño, M.C., Marquina, C., Ibarra, M.R., Rubiales, D., and Pérez-Luque, A., Nanoparticles as smart treatment-delivery systems in plants: assessment of different techniques of microscopy for their visualization in plant tissues, Ann. Bot., 2008, vol. 101, pp. 187–195.

    Article  PubMed  Google Scholar 

  5. Khodakovskaya, M.V., Kim, B.S., Kim, J.N., Alimohammadi, M., Dervishi, E., Mustafa, T., and Cernigla, C.E., Carbon nanotubes as plant growth regulators: effects on tomato growth, reproductive system, and soil microbial community, Small, 2013, vol. 9, pp. 115–123.

    CAS  PubMed  Google Scholar 

  6. De La Torre-Roche, R., Hawthorne, J., Deng, Y., Xing, B., Cai, W., Newman, L.A., Wang, Q., Ma, X., Hamdi, H., and White, J.C., Multiwalled carbon nanotubes and C60 fullerenes differentially impact the accumulation of weathered pesticides in four agricultural plants, Environ. Sci. Technol., 2013, vol. 47, pp. 12539–12547.

    Article  Google Scholar 

  7. Chai, M., Shi, F., Li, R., Liu, L., Liu, Y., and Liu, F., Interactive effects of cadmium and carbon nanotubes on the growth and metal accumulation in a halophyte Spartina alterniflora (Poaceae), Plant Gowth Regul., 2013, vol. 71, pp. 171–179.

    Article  CAS  Google Scholar 

  8. Vaziri, A., Panahpour, E., and Mirzaee Beni, M., Phytoremediation: a method for treatment of petroleum hydrocarbon contaminated soils, Int. J. Farm. Alli. Sci., 2013, vol. 2, pp. 909–913.

    Google Scholar 

  9. Enhanced phytoremediation efficiency of TNT-contaminated soil by nanoscale zero valent iron, Proc. 2nd Int. Conf. “Environment and Industrial Innovation IPCBEE,” Jiamjitrpanich, W., Parkpian, P., Polprasert, C., and Kosanlavit, R., Eds., Singapore: Int. Assoc. Comp. Sci. Inf. Technol., 2012, vol. 35, pp. 82–86.

  10. Tangahu, B.V., Sheikh Abdullah, S.R., Basri, H., Idris, M., Anuar, N., and Mukhlisin, M., A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation, Int. J. Chem. Eng., 2011, vol. 2011. doi 10.1155/2011/939161

  11. Jiamjitrpanich, W., Parkpian, P., Polprasert, C., and Kosanlavit, R., Trinitrotoluene and its metabolites in shoots and roots of Panicum maximum in nano-phytoremediation, Int. J. Environ. Sci. Dev., 2013, vol. 4, pp. 7–10.

    Article  CAS  Google Scholar 

  12. Turner, N.C., Techniques and experimental approaches for the measurement of plant water status, Plant Soil, 1981, vol. 58, pp. 339–366.

    Article  Google Scholar 

  13. Wierzbicka, M., Resumption of mitotic activity in Allium cepa L. root tips during treatment with lead salts, Environ. Exp. Bot., 1994, vol. 34, pp. 173–180.

    Article  CAS  Google Scholar 

  14. Seregin, I.V. and Ivanov, V.B., Physiological aspects of cadmium and lead toxic effects on higher plants, Russ. J. Plant Physiol., 2001, vol. 48, pp. 523–544.

    Article  CAS  Google Scholar 

  15. Khodakovskaya, M., Dervishi, E., Mahmood, M., Xu, Y., Li, Z., Watanabe, F., and Biris, A.S., Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth, ACS Nano, 2009, vol. 3, pp. 3221–3227.

    Article  CAS  PubMed  Google Scholar 

  16. Khodakovskaya, M.V., de Silva, K., Nedosekin, D.A., Dervishi, E., Biris, A.S., Shashkov, E.V., Galanzha, E.I., and Zharov, V.P., Complex genetic, photothermal, and photoacoustic analysis of nanoparticle–plant interactions, Proc. Natl. Acad. Sci. USA, 2011, vol. 108, pp. 1028–1033.

    Article  CAS  PubMed  Google Scholar 

  17. Villagarcia, H., Dervishi, E., de Silva, K., Biris, A.S., and Khodakovskaya, M.V., Surface chemistry of carbon nanotubes impacts the growth and expression of water channel protein in tomato plants, Small, 2012, vol. 8, pp. 2328–2334.

    Article  CAS  PubMed  Google Scholar 

  18. Khodakovskaya, M.V., de Silva, K., Biris, A.S., Dervishi, E., and Villagarcia, H., Carbon nanotubes induce growth enhancement of tobacco cells, ACS Nano, 2012, vol. 6, pp. 2128–2135.

    Article  CAS  PubMed  Google Scholar 

  19. Cañas, J.E., Long, M., Nations, S., Vadan, R., Dai, L., Luo, M., Ambikapathi, R., Lee, E.H., and Olszyk, D., Effects of functionalized and nonfunctionalized singlewalled carbon nanotubes on root elongation of select crop species, Environ. Toxicol. Chem., 2008, vol. 27, pp. 1922–1931.

    Article  PubMed  Google Scholar 

  20. Lin, D. and Xing, B., Phytotoxicity of nanoparticles: inhibition of seed germination and root growth, Environ. Pollut., 2007, vol. 150, pp. 243–250.

    Article  CAS  PubMed  Google Scholar 

  21. Rao, G.P., Lu, C., and Su, F., Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review, Sep. Purif. Technol., 2007, vol. 58, pp. 224–231.

    Article  CAS  Google Scholar 

  22. Li, Y.H., Wang, S., Luan, Z., Ding, J., Xu, C., and Wu, D., Adsorption of cadmium (II) from aqueous solution by surface oxidized carbon nanotubes, Carbon, 2003, vol. 41, pp. 1057–1062.

    Article  CAS  Google Scholar 

  23. Dehaghi, M., Removal of lead ions from aqueous solution using multi-walled carbon nanotubes: the effect of functionalization, J. Appl. Environ. Biol. Sci., 2014, vol. 4, pp. 316–326.

    Google Scholar 

  24. Sadeghinya, A., Bina, B., Mahvi, A.H., Esrafili, A., Dehghanifard, E., and Takanlu, L.K., Efficiency determination of single-walled carbon nanotubes on adsorption of copper ions from synthetic wastewater, Int. J. Environ. Health Eng., 2015, vol. 4:40.

    Google Scholar 

  25. Zuverza-Mena, N., Martínez-Fernández, D., Du, W., Hernandez-Viezcas, J.A., Bonilla-Bird, N., López-Moreno, M.L., Komárek, M., Peralta-Videa, J.R., and Gardea-Torresdey, J.L., Exposure of engineered nanomaterials to plants: insights into the physiological and biochemical responses—a review, Plant Physiol. Biochem., 2017, vol. 110, pp. 236–264.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Oloumi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oloumi, H., Mousavi, E.A. & Nejad, R.M. Multi-Wall Carbon Nanotubes Effects on Plant Seedlings Growth and Cadmium/Lead Uptake In Vitro. Russ J Plant Physiol 65, 260–268 (2018). https://doi.org/10.1134/S102144371802019X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102144371802019X

Keywords

Navigation