Skip to main content
Log in

Spermine Pre-Treatment Improves Some Physiochemical Parameters and Sodium Transporter Gene Expression of Pumpkin Seedlings under Salt Stress

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

It is known that polyamines (PAs) including spermine (Spm) enhance the abiotic stress tolerance of crops. Here, the effects of hydroponic Spm pre-treatment on the amelioration of the adverse effects of salinity were investigated in pumpkin (Cucurbita pepo L.) that is an economically important horticultural crop and sensitive to salinity, especially at the establishment stage. For this purpose, 10-day-old, uniform-sized seedlings were transplanted to plastic containers containing Hoagland nutrient solution. Spm was added at 0.1 and 1 mM to the hydroponic medium for 5 days before stress. The plants were treated with 40 and 80 mM NaCl for inducing salinity stress. Salt stress reduced the plant growth and potassium content in roots, and these detrimental effects were alleviated when plants were pre-treated with Spm. Salinity stress caused a significant increase in sodium and γ-amino butyric acid (GABA) content when compared with controls. Spm pre-treatment ameliorated these salinity stress effects by increasing sodium content of root and leaves GABA content. Expression analysis of two sodium transporter genes, salt overly sensitive1 (SOS1) and Na+/H+ exchanger (NHX1) revealed that their expression was differentially induced in roots of plants treated either with salinity or Spm. These results suggest that Spm via the overexpression of the NHX1 gene substantially increased the tolerance to stress by sequestering excess Na+ into the vacuoles and sustaining a better cellular environment. Moreover, Spm has potential to scavenge directly free radical and to alleviate growth inhibition and promote the activity of antioxidant system enzymes in pumpkin seedlings under salt stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ddH2O:

double distilled H2O

EF1α:

elongation factor1-α

FV:

fast vacuolar channels

GABA:

γ-aminobutyric acid

HN:

hydroxyl naphthaldehyde

NHX1:

Na+/H+ exchanger

PAO:

polyamine oxidase

PA:

polyamine

Put:

putrescent

SOS1:

salt overly sensitive1

Spd:

spermidine

Spm:

spermine

SV:

slow vacuolar channels

References

  1. Parida, A.K. and Das, A.B., Salt tolerance and salinity effects on plants: a review, Ecotoxicol. Environ. Saf., 2005, vol. 60, pp. 324–349.

    Article  CAS  PubMed  Google Scholar 

  2. Renault, H., El Amrani, A., Palanivelu, R., Updegraff, E.P., Yu, A., Renou, J.P., Preuss, D., Bouchereau, A., and Deleu, C., GABA accumulation causes cell elongation defects and a decrease in expression of genes encoding secreted and cell wallrelated proteins in Arabidopsis thaliana, Plant Cell Physiol., 2011, vol. 52, pp. 894–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Xing, S.G., Jun, Y.B., Hau, Z.W., and Liang, L.Y., Higher accumulation of γ-aminobutyric acid induced by salt stress through stimulating the activity of diamine oxidases in Glycine max (L.) Merr. roots, Plant Physiol. Biochem., 2007, vol. 45, pp. 560–566.

    Article  CAS  PubMed  Google Scholar 

  4. Zhu, J.K., Regulation of ion homeostasis under salt stress, Curr. Opin. Plant Biol., 2003, vol. 6, pp. 441–445.

    Article  CAS  PubMed  Google Scholar 

  5. Hasegawa, P.M., Bressan, R.A., Zhu, J.K., and Bohnert, H.J., Plant cellular and molecular responses to high salinity, Annu. Rev. Plant Biol., 2000, vol. 51, pp. 463–499.

    Article  CAS  Google Scholar 

  6. Chinnusamy, V., Zhu, J., and Zhu, J.K., Salt stress signaling and mechanisms of plant salt tolerance, in Genetic Engineering, Setlow, J.K. and Guerineau, F., Eds., Springer, 2006, pp. 141–177.

    Chapter  Google Scholar 

  7. Leidi, E.O., Barragán, V., Rubio, L., El-Hamdaoui, A., Ruiz, M.T., Cubero, B., Fernández, J.A., Bressan, R.A., Hasegawa, P.M., Quintero, F.J., and Pardo, J.M., The AtNHX1 exchanger mediates potassium compartmentation in vacuoles of transgenic tomato, Plant J., 2010, vol. 61, pp. 495–506.

    Article  CAS  PubMed  Google Scholar 

  8. Hussain, S.S., Ali, M., Ahmad, M., and Siddique, K.H., Polyamines: natural and engineered abiotic and biotic stress tolerance in plants, Biotechnol. Adv., 2011, vol. 29, pp. 300–311.

    Article  CAS  PubMed  Google Scholar 

  9. Gill, S.S. and Tuteja, N., Polyamines and abiotic stress tolerance in plants, Plant Signal. Behav., 2010, vol. 5, pp. 26–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Shu, S., Yuan, L.Y., Guo, S.R., Sun, J., and Yuan, Y.H., Effects of exogenous spermine on chlorophyll fluorescence, antioxidant system and ultrastructure of chloroplasts in Cucumis sativus L. under salt stress, Plant Physiol. Biochem., 2013, vol. 63, pp. 209–216.

    Article  CAS  PubMed  Google Scholar 

  11. Radhakrishnan, R. and Lee, I.J., Spermine promotes acclimation to osmotic stress by modifying antioxidant, abscisic acid, and jasmonic acid signals in soybean, J. Plant Growth Regul., 2013, vol. 32, pp. 22–30.

    Article  CAS  Google Scholar 

  12. Zhu, J.K., Plant salt tolerance, Trends Plant Sci., 2001, vol. 6, pp. 66–71.

    Article  CAS  PubMed  Google Scholar 

  13. Baum, G., Lev-Yadun, S., Fridmann, Y., Arazi, T., Katsnelson, H., Zik, M., and Fromm, H., Calmodulin binding to glutamate decarboxylase is required for regulation of glutamate and GABA metabolism and normal development in plants, EMBO J., 1996, vol. 15, no. 12, pp. 2988–2996.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Bor, M., Seckin, B., Ozgur, R., Yilmaz, O., Ozdemir, F., and Turkan, I., Comparative effects of drought, salt, heavy metal and heat stresses on gamma-aminobutyric acid levels of sesame (Sesamum indicum L.), Acta Physiol. Plant., 2009, vol. 31, pp. 655–659.

    Article  CAS  Google Scholar 

  15. Zheljazkov, V.D. and Nielsen, N.E., Effect of heavy metals on peppermint and cornmint, Plant Soil, 1996, vol. 178, pp. 59–66.

    Article  CAS  Google Scholar 

  16. Siddiqui, M.H., Al-Whaibi, M.H., Faisal, M., Al Sahli, A.A., Nano-silicon dioxide mitigates the adverse effects of salt stress on Cucurbita pepo L., Environ. Toxicol. Chem., 2014, vol. 33, pp. 2429–2437.

    Article  CAS  PubMed  Google Scholar 

  17. Sang, Q., Shu, S., Shan, X., Guo, S., and Sun, J., Effects of exogenous spermidine on antioxidant system of tomato seedlings exposed to high temperature stress, Russ. J. Plant Physiol., 2016, vol. 63, pp. 645–655.

    Article  CAS  Google Scholar 

  18. Signorelli, S., Dans, P.D., Coitiño, E.L., Borsani, O., and Monza, J., Connecting proline and ?-aminobutyric acid in stressed plants through non-enzymatic reactions, PloS One, 2015, vol. 10, p. e0115349.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kuznetsov, Vl.V., Radyukina, N., and Shevyakova, N., Polyamines and stress: biological role, metabolism, and regulation, Russ. J. Plant Physiol., 2006, vol. 53, pp. 583–604.

    Article  CAS  Google Scholar 

  20. Michaeli, S. and Fromm, H., Closing the loop on the GABA shunt in plants: are GABA metabolism and signaling entwined? Front. Plant Sci., 2015, vol. 6, p. 419. https://doi.org/10.3389/fpls.2015.00419

    Article  PubMed  PubMed Central  Google Scholar 

  21. Angelini, R., Cona, A., Federico, R., Fincato, P., Tavladoraki, P., and Tisi, A., Plant amine oxidases “on the move”: an update, Plant Physiol. Biochem., 2010, vol. 48, pp. 560–564.

    Article  CAS  PubMed  Google Scholar 

  22. Shabala, S. and Cuin, T.A., Potassium transport and plant salt tolerance, Physiol. Plant., 2008, vol. 133, pp. 651–669.

    Article  CAS  PubMed  Google Scholar 

  23. Shabala, S., Cuin, T.A., and Pottosin, I., Polyamines prevent NaCl-induced K+ efflux from pea mesophyll by blocking non-selective cation channels, FEBS Lett., 2007, vol. 581, pp. 1993–1999.

    Article  CAS  PubMed  Google Scholar 

  24. Pottosin, I. and Shabala, S., Polyamines control of cation transport across plant membranes: implications for ion homeostasis and abiotic stress signaling, Front. Plant Sci., 2014, vol. 5, p.154.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hasegawa, P.M., Sodium (Na+) homeostasis and salt tolerance of plants, Environ. Exp. Bot., 2013, vol. 92, pp. 19–31.

    Article  CAS  Google Scholar 

  26. Bonales-Alatorre, E., Shabala, S., Chen, Z.H., and Pottosin, I., Reduced tonoplast fast-activating and slow-activating channel activity is essential for conferring salinity tolerance in a facultative halophyte, quinoa, Plant Physiol., 2013, vol. 162, pp. 940–952.

    Article  CAS  PubMed  Google Scholar 

  27. Shi, H., Ishitani, M., Kim, C., and Zhu, J.K., The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 6896–6901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yamaguchi, K., Takahashi, Y., Berberich, T., Imai, A., Miyazaki, A., Takahashi, T., Michael, A., and Kusano, T., The polyamine spermine protects against high salt stress in Arabidopsis thaliana, FEBS Lett., 2006, vol. 580, pp. 6783–6788.

    Article  CAS  PubMed  Google Scholar 

  29. Alcázar, R., Altabella, T., Marco, F., Bortolotti, C., Reymond, M., Koncz, C., Carrasco, P., and Tiburcio, A.F., Polyamines: molecules with regulatory functions in plant abiotic stress tolerance, Planta, 2010, vol. 231, pp. 1237–1249.

    Article  PubMed  Google Scholar 

  30. Zepeda-Jazo, I., Shabala, S., Chen, Z., and Pottosin, I.I., Na+–K+ transport in roots under salt stress, Plant Signal. Behav., 2008, vol. 3, pp. 401–403.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Nejad-Alimoradi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nejad-Alimoradi, F., Nasibi, F., Manoochehri Kalantari, K. et al. Spermine Pre-Treatment Improves Some Physiochemical Parameters and Sodium Transporter Gene Expression of Pumpkin Seedlings under Salt Stress. Russ J Plant Physiol 65, 222–228 (2018). https://doi.org/10.1134/S1021443718020188

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443718020188

Keywords

Navigation