Skip to main content
Log in

MiR395 Overexpression Increases Eggplant Sensibility to Verticillium dahliae Infection

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Verticillium wilt (V. wilt), a notorious wilt disease caused by Verticillium dahliae, often leads to the reduction of eggplant (Solanum melongena L.) production. MiRNAs, as a class of small RNAs, can regulate gene expression and then affect growth and development in plants. MiR395 has been proven to respond to sulfate-deficient stress in Arabidopsis thaliana and sulfate is well known to have a close relationship with plant disease resistance. To explore the function of eggplant miR395, we examined its expression in V. dahliae-infected eggplant by qRT-PCR and found miR395 exhibited a gradual reduction trend with time after infection. We then expressed pre-miR395 from Arabidopsis thaliana in Suqi eggplant and resistance analysis showed that miR395 overexpressed plants were hypersensitive to V. dahliae infection. We further measured the content of GSH and activities of POD and SOD and the results indicated that the index of GSH/POD/SOD in the overexpressed plants was lower than that of the wild-type control under V. dahliae infection. These results suggest that miR395 plays a negative role in eggplant response to V. dahliae infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

6-BA:

6-benzylaminopurine

Cef:

cefotaxime

CTAB:

hexadecyl trimethyl ammonium bromide

GSH:

glutathione

Hyg B:

hygromycin B

KT:

kinetin

POD:

peroxidase

qRT-PCR:

real-time quantitative RT-PCR

RISC:

RNAinduced silencing complex

SOD:

superoxide dismutase

References

  1. Fradin, E.F. and Thomma, B.P., Physiology and molecular aspects of Verticillium wilt diseases caused by V. dahliae and V. albo-atrum, Mol. Plant Pathol., 2006, vol. 7, pp. 71–86.

    Article  CAS  PubMed  Google Scholar 

  2. Atallah, Z.K., Bae, J., Jansky, S.H., Rouse, D.I., and Stevenson, W.R., Multiplex real-time quantitative PCR to detect and quantify Verticillium dahliae colonization in potato lines that differ in response to Verticillium wilt, Phytopathology, 2007, vol. 97, pp. 865–872.

    Article  CAS  PubMed  Google Scholar 

  3. Liu, S., Zhu, Y., Xie, C., Jue, D., Hong, Y., Chen, M., Hubdar, A.K., and Yang, Q., Transgenic potato plants expressing StoVe1 exhibit enhanced resistance to Verticillium dahliae, Plant Mol. Biol. Rep., 2012, vol. 30, pp. 1032–1039.

    Article  CAS  Google Scholar 

  4. Jue, D.W., Yang, L., Shi, C., Chen, M., and Yang, Q., Cloning and characterization of a Solanum torvum NPR1 gene involved in regulating plant resistance to Verticillium dahliae, Acta Physiol. Plant., 2014, vol. 36, pp. 2999–3011.

    Article  CAS  Google Scholar 

  5. Matthewman, C.A., Kawashima, C.G., Húska, D., Csorba, T., Dalmay, T., and Kopriva, S., miR395 is a general component of the sulfate assimilation regulatory network in Arabidopsis, FEBS Lett., 2012, vol. 586, pp. 3242–3248.

    Article  CAS  PubMed  Google Scholar 

  6. Jones-Rhoades, M.W., Bartel, D.P., and Bartel, B., MicroRNAs and their regulatory roles in plants, Annu. Rev. Plant Biol., 2006, vol. 57, pp. 19–53.

    Article  CAS  PubMed  Google Scholar 

  7. Baulcombe, D., RNA silencing in plants, Nature, 2004, vol. 431, pp. 356–363.

    Article  CAS  PubMed  Google Scholar 

  8. Bartel, D.P., MicroRNAs: genomics, biogenesis, mechanism and function, Cell, 2004, vol. 116, pp. 281–297.

    CAS  Google Scholar 

  9. Voinnet, O., Origin, biogenesis, and activity of plant microRNAs, Cell, 2009, vol. 136, pp. 669–687.

    CAS  PubMed  Google Scholar 

  10. Llave, C., Xie, Z., Kasschau, K.D., and Carrington, J.C., Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA, Science, 2002, vol. 297, pp. 2053–2056.

    Article  CAS  PubMed  Google Scholar 

  11. Rhoades, M.W., Reinhart, B.J., Lim, L.P., Burge, C.B., Bartel, B., and Bartel, D.P., Prediction of plant microRNA targets, Cell, 2002, vol. 110, pp. 513–520.

    Article  CAS  PubMed  Google Scholar 

  12. Kawashima, C.G., Yoshimoto, N., Maruyama-Nakashita, A., Tsuchiya, Y.N., Saito, K., Takahashi, H., and Dalmay, T., Sulphur starvation induces the expression of microRNA-395 and one of its target genes but in different cell types, Plant J., 2009, vol. 57, pp. 313–321.

    Article  CAS  PubMed  Google Scholar 

  13. Kawashima, C.G., Matthewman, C.A., Huang, S., Lee, B.R., Yoshimoto, N., Koprivova, A., Rubio-Somoza, I., Todesco, M., Rathjen, T., Saito, K., Takahashi, H., Dalmay, T., and Kopriva, S., Interplay of SLIM1 and miR395 in regulation of sulfate assimilation in Arabidopsis, Plant J., 2011, vol. 66, pp. 863–876.

    Article  CAS  PubMed  Google Scholar 

  14. Liang, G., Yang, F.X., and Yu, D.Q., MicroRNA395 mediates regulation of sulfate accumulation and allocation in Arabidopsis thaliana, Plant J., 2010, vol. 62, pp. 1046–1057.

    CAS  PubMed  Google Scholar 

  15. Takahashi, H., Kopriva, S., Giordano, M., Saito, K., and Hell, R., Sulfate assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes, Annu. Rev. Plant Biol., 2011, vol. 62, pp. 157–184.

    Article  CAS  PubMed  Google Scholar 

  16. Huang, S.Q., Xiang, A.L., Che, L.L., Chen, S., Li, H., Song, J.B., and Yang, Z.M., A set of miRNAs from Brassica napus in response to sulfate deficiency and cadmium stress, Plant Biotechnol., 2010, vol. 8, pp. 887–899.

    Article  CAS  Google Scholar 

  17. Yang, L., Jue, D.W., Li, W., Zhang, R.J., Chen, M., and Yang, Q., Identification of miRNA from eggplant (Solanum melongena L.) by small RNA deep sequencing and their response to Verticillium dahliae infection, PloS One, 2013, vol. 8: e72840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Murashige, T. and Skoog, F., A revised medium for rapid growth and bioassays with tobacco tissue cultures, Plant Physiol., 1962, vol. 15, pp. 473–497.

    Article  CAS  Google Scholar 

  19. Pantelides, I.S., Tjamos, S.E., and Paplomatas, E.J., Ethylene perception via ETR1 is required in Arabidopsis infection by Verticillium dahliae, Mol. Plant Pathol., 2010, vol. 11, pp. 191–202.

    Article  CAS  PubMed  Google Scholar 

  20. Afroz, A., Chaudhry, Z., Rashid, U., Ali, G.M., Nazir, F., Iqbal, J., and Khan, M.R., Enhanced resistance against bacterial wilt in transgenic tomato (Lycopersicon esculentum) lines expressing the Xa21 gene, Plant Cell, Tissue Organ Cult., 2011, vol. 104, pp. 227–237.

    Article  CAS  Google Scholar 

  21. Höfgen, R. and Willmitzer, L., Storage of competent cells for Agrobacterium transformation, Nucleic Acids Res., 1988, vol. 16, p. 9877.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ellman, G.L., Tissue sulphydryl groups, Arch. Biochem. Biophys., 1959, vol. 82, pp. 70–77.

    Article  CAS  PubMed  Google Scholar 

  23. Han, Y., Zhang, J., Chen, X., Gao, Z., Xuan, W., Xu, S., Ding, X., and Shen, W., Carbon monoxide alleviates cadmium-induced oxidative damage by modulating glutathione metabolism in the roots of Medicago sativa, New Phytol., 2008, vol. 177, pp. 155–166.

    CAS  PubMed  Google Scholar 

  24. Fan, H., Li, T., Guan, L., Li, Z., Guo, N., Cai, Y., and Lin, Y., Effects of exogenous nitric oxide on antioxidation and DNA methylation of Dendrobium huoshanense grown under drought stress, Plant Cell, Tissue Organ Cult., 2012, vol. 109, pp. 307–314.

    Article  CAS  Google Scholar 

  25. Alscher, R.G., Biosynthesis and antioxidant function of glutathione in plants, Plant Physiol., 1989, vol. 77, pp. 457–464.

    Article  CAS  Google Scholar 

  26. May, M.J., Hammondkosack, K.E., and Jones, J., Involvement of reactive oxygen species glutathione metabolism, and lipid peroxidation in the Cf-genedependent defense response of tomato cotyledons induced by race-specific elicitors of Cladosporium fulvum, Plant Physiol., 1996, vol. 110, pp. 1367–1379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Taylor, R.S., Tarver, J.E., Hiscock, S.J., and Donoghue, P.C.J., Evolutionary history of plant microRNA, Trends Plant Sci., 2014, vol. 19, pp. 175–182.

    Article  CAS  PubMed  Google Scholar 

  28. Shah, M.R., Mukherjee, P.K., and Eapen, S.S., Expression of a fungal endochitinase gene in transgenic tomato and tobacco results in enhanced tolerance to fungal pathogens, Physiol. Mol. Biol. Plants, 2010, vol. 16, pp. 39–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kim, J.S., Seo, S.G., Kim, S.H., Usui, K., and Shim, I.S., Effects on GSH synthesis in Chinese cabbage when the culturing solution is supplemented with ammonium sulfate or the constituent amino acids for glutathione, Plant Biol., 2005, vol. 48, pp. 404–410.

    Article  CAS  Google Scholar 

  30. Matsumoto, H., Cell biology of aluminium toxicity and tolerance in higher plants, Int. Rev. Cytol., 2000, vol. 200, pp. 1–46.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Q. Yang.

Additional information

The article is published in the original.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mu, X.Y., Liu, X.R., Cai, J.H. et al. MiR395 Overexpression Increases Eggplant Sensibility to Verticillium dahliae Infection. Russ J Plant Physiol 65, 203–210 (2018). https://doi.org/10.1134/S1021443718020164

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443718020164

Keywords

Navigation