Skip to main content
Log in

Comparative Transcriptome Analysis of Pecan Female and Male Inflorescences

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Pecan (Carya illinoinensis (Wangenh.) K.Koch) is a popular long-lived diploid tree insilviculture and horticulture. Pecan is a wind pollinated monoecious tree exhibiting heterodichogamy, and the location and timing of functioning female and male organs are different. The limited availability of pecan genomic information has hindered research on the mechanisms underlying its flower development. In this study, we obtained the first de novo assembly of pecan transcriptome and performed acomparative analysis of pecan female and male inflorescences using RNA-seq technology. A final dataset containing 53894 unigenes in the female pecan inflorescence was obtained, with an N50 length of 1411 bp, while only small differences existed among female and male inflorescence unigenes. Using the bioinformatics approach, we identified 11813 simple sequence repeats in unigenes and developed primers for 7725 of them. A total of 5826 differentially expressed genes were identified between pecan female and male inflorescences. A large number of them were linked to plant hormone regulation, especially revolved in the gibberellin biosynthesis (GA2OX and GA20OX), gibberellin signal reception (GID1) and gibberellin regulation (GASA, GRF, GRAS). In addition, almost onetenth (569) of unigenes encoding transcription factors in pecan differentially expressed. At least 15 ARF, 3 bZIP, 33 bHLH, 8 GH3, 13 MADS-box, 92 MYB, 28 NAC and 14 zf-Dof transcription factors were associated with pecan flower sex differentiation. This assembly of pecan transcriptome could contribute to enhancing understanding of the gene specialization in flowers of different sexes, and also be particularly useful for pecan germplasm management and breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DEG:

Differentially Expressed Gene

NCBI:

National Center for Biotechnology Information, United States

NCBI-Nr:

NCBI Non-redundant Protein Database

NCBI-Nt:

NCBI Non-redundant Nucleotide Database

qPCR:

Real-time quantitative Polymerase Chain Reaction

RPKM:

Reads Per Kilobase Of Xxon Model Per Million Mapped Reads

SSR:

Simple Sequence Repeat

References

  1. Grauke, L.J. and Mendoza-Herrera, M.A., Population structure in the genus Carya, Proc. I Int. Symp. Wild Relatives of Subtropical and Temperate Fruit and Nut Crops, 2012, vol. 948, pp. 143–158.

    Google Scholar 

  2. Hall, G.D., Pecan food potential in prehistoric North America, Econ. Bot., 2000, vol. 54, pp. 103–112.

    Article  Google Scholar 

  3. Villarreal-Lozoya, J.E., Lombardini, L., and Cisneros-Zevallos, L., Phytochemical constituents and antioxidant capacity of different pecan [Carya illinoinensis (Wangenh.) K. Koch] cultivars, Food Chem., 2007, vol. 102, pp. 1241–1249.

    Article  CAS  Google Scholar 

  4. Bansode, R.R., Losso, J.N., Marshall, W.E., Rao, R.M., and Portier, R.J., Adsorption of volatile organic compounds by pecan shell-and almond shellbased granular activated carbons, Bioresour. Technol., 2003, vol. 90, pp. 175–184.

    Article  CAS  PubMed  Google Scholar 

  5. Vaghetti, J.C.P., Lima, E.C., and Royer, B., da Cunha, B.M., Cardoso, N.F., Brasil, J.L., and Dias, S.L.P., Pecan nutshell as biosorbent to remove Cu(II), Mn(II) and Pb(II) from aqueous solutions, J. Hazard. Mater., 2009, vol. 162, pp. 270–280.

    CAS  PubMed  Google Scholar 

  6. Busscher, W.J., Novak, J.M., Evans, D.E., Watts, D.W., Niandou, M.A.S., and Ahmedna, M., Influence of pecan biochar on physical properties of a Norfolk loamy sand, Soil Sci., 2010, vol. 175, pp. 10–14.

    Article  CAS  Google Scholar 

  7. Wood, B.W., Pollination characteristics of pecan trees and orchards, HortTechnology, 2000, vol. 10, pp. 120–126.

    Google Scholar 

  8. Wood, B.W., Influence of plant bioregulators on pecan flowering and implications for regulation of pistillate flower initiation, Hortscience, 2011, vol. 46, pp. 870–877.

    CAS  Google Scholar 

  9. Grabherr, M.G., Haas, B.J., Yassour, M., Levin, J.Z., Thompson, D.A., Amit, I., Adiconis, X., Fan, L., Raychowdhury, R., Zeng, Q.D., Chen, Z.H., Mauceli, E., Hacohen, N., Gnirke, A., Rhind, N., et al., Full-length transcriptome assembly from RNA-Seq data without a reference genome, Nat. Biotechnol., 2011, vol. 29, pp. 644–652.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Langmead, B., Trapnell, C., Pop, M., and Salzberg, S.L., Ultrafast and memory-efficient alignment of short DNA sequences to the human genome, Genome Biol., 2009, vol. 10: R25.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rozen, S. and Skaletsky, H., Primer 3 on the WWW for general users and for biologist programmers, Methods Mol. Biol., 2000, vol. 132, pp. 365–386.

    CAS  PubMed  Google Scholar 

  12. Liu, J., Mei, D., Li, Y., Huang, S., and Hu, Q., Deep RNA-Seq to unlock the gene bank of floral development in Sinapis arvensis, PLoS One, 2014, vol. 9, p. e105775.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Nie, S., Li, C., Xu, L., Wang, Y., Huang, D., Muleke, E.M., Sun, X., Xie, Y., and Liu, L., De novo transcriptome analysis in radish (Raphanus sativus L.) and identification of critical genes involved in bolting and flowering, BMC Genomics, 2016, vol. 17, p.389.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Liu, H., Fu, J., Du, H., Hu, J., and Wuyun, T., De novo sequencing of Eucommia ulmoides flower bud transcriptomes for identification of genes related to floral development, Genomics Data, 2016, vol. 9, pp. 105–110.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Vendrame, W.A., Kochert, G., and Wetzstein, H.Y., AFLP analysis of variation in pecan somatic embryos, Plant Cell Rep., 1999, vol. 18, pp. 853–857.

    Article  CAS  Google Scholar 

  16. Beedanagari, S.R., Dove, S.K., Wood, B.W., and Conner, P.J., A first linkage map of pecan cultivars based on RAPD and AFLP markers, Theor. Appl. Genet., 2005, vol. 110, pp. 1127–1137.

    Article  CAS  PubMed  Google Scholar 

  17. Brezna, B. and Kuchta, T., A novel real-time polymerase chain reaction method for the detection of pecan nuts in food, Eur. Food Res. Technol., 2008, vol. 226, pp. 1113–1118.

    Article  CAS  Google Scholar 

  18. Jia, X.D., Wang, T., Zhai, M., Li, Y.R., and Guo, Z.R., Genetic diversity and identification of Chinese-grown pecan using ISSR and SSR markers, Molecules, 2011, vol. 16, pp. 10078–10092.

    Article  CAS  PubMed  Google Scholar 

  19. Chaney, W., Han, Y., Rohla, C., Monteros, M.J., and Grauke, L.J., Developing molecular marker resources for pecan, Acta Hortic., 2013, vol. 1070, pp. 127–132.

    Google Scholar 

  20. Li, J., Zeng, Y., Shen, D., Xia, G., Huang, Y., Huang, Y., Chang, J., Huang, J., and Wang, Z., Development of SSR markers in hickory (Carya cathayensis Sarg.) and their transferability to other species of Carya, Curr. Genomics, 2014, vol. 15, pp. 357–379.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Eason, J.R., Johnston, J.W., Vré, L.D., Sinclair, B.K., and King, G.A., Amino acid metabolism in senescing Sandersonia aurantiaca flowers: cloning and characterization of asparagine synthetase and glutamine synthetase cDNAs, Aust. J. Plant Physiol., 2000, vol. 27, pp. 389–396.

    CAS  Google Scholar 

  22. Nacken, W.K., Huijser, P., Beltran, J.P., Saedler, H., and Sommer, H., Molecular characterization of two stamen-specific genes, tap1 and fil1, that are expressed in the wild type, but not in the deficiens mutant of Antirrhinum majus, Mol. Gen. Genet., 1991, vol. 229, pp. 129–136.

    Article  CAS  PubMed  Google Scholar 

  23. Chhun, T., Aya, K., Asano, K., Yamamoto, E., Morinaka, Y., Watanabe, M., Kitano, H., Ashikari, M., Matsuoka, M., and Ueguchi-Tanaka, M., Gibberellin regulates pollen viability and pollen tube growth in rice, Plant Cell, 2007, vol. 19, pp. 3876–3888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Dijkstra, C., Adams, E., Bhattacharya, A., Page, A.F., Anthony, P., Kourmpetli, S., Power, J.B., Lowe, K.C., Thomas, S.G., Hedden, P., Phillips, A.L., and Davey, M.R., Over-expression of a gibberellin 2-oxidase gene from Phaseolus coccineus L. enhances gibberellin inactivation and induces dwarfism in Solanum species, Plant Cell Rep., 2008, vol. 27, pp. 463–470.

    Article  CAS  PubMed  Google Scholar 

  25. Murase, K., Hirano, Y., Sun, T.P., and Hakoshima, T., Gibberellin-induced DELLA recognition by the gibberellin receptor GID1, Nature, 2008, vol. 456, pp. 459–463.

    Article  CAS  PubMed  Google Scholar 

  26. Xu, G., Huang, J., Yang, Y., and Yao, Y.A., Transcriptome analysis of flower sex differentiation in Jatropha curcas L. using RNA sequencing, PLoS One, 2016, vol. 11, p. e0145613.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Harberd, N.P., Botany. Relieving DELLA restraint, Science, 2003, vol. 299, pp. 1853–1854.

    Article  CAS  PubMed  Google Scholar 

  28. Aubert, D., Chevillard, M., Dorne, A.M., Arlaud, G., and Herzog, M., Expression patterns of GASA genes in Arabidopsis thaliana: the GASA4 gene is up-regulated by gibberellins in meristematic regions, Plant Mol. Biol., 1998, vol. 36, pp. 871–883.

    Article  CAS  PubMed  Google Scholar 

  29. Qu, J., Kang, S.G., Hah, C., and Jang, J.C., Molecular and cellular characterization of GA-stimulated transcripts GASA4 and GASA6 in Arabidopsis thaliana, Plant Sci., 2016, vol. 246, pp. 1–10.

    Article  CAS  PubMed  Google Scholar 

  30. Airoldi, C.A. and Davies, B., Gene duplication and the evolution of plant MADS-box transcription factors, J. Genet. Genomics, 2012, vol. 39, pp. 157–165.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Xuan.

Additional information

The article is published in the original.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, Z., Wang, G., Xuan, J. et al. Comparative Transcriptome Analysis of Pecan Female and Male Inflorescences. Russ J Plant Physiol 65, 186–196 (2018). https://doi.org/10.1134/S1021443718020139

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443718020139

Keywords

Navigation