Skip to main content
Log in

First insights into the biochemical and molecular response to cold stress in Cicer microphyllum, a crop wild relative of chickpea (Cicer arietinum)

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Identifying a potential crop wild relative (CWR) of legumes, especially one with high abiotic stress tolerance, has been a priority of plant breeders for many decades. Traditionally CWRs have been selected based on biometrical traits observed in the field, however this methodology is insufficient for research into nonmorphological traits such as stress tolerance. Biochemical and molecular analysis of potential CWRs allows for more informed selection. Specifically, we focus on Cicer microphyllum Benth, a CWR of cultivated chickpea Cicer arietinum L., which is distributed in Trans Himalayan ranges adjacent to glaciers of India and Pakistan at the alpine altitude gradient between 2700 to 6000 m. The objective of this study is to begin characterization of the biochemical and molecular bases of adaptation of C. microphyllum to cold stress and compare it to its cultivated relative (Cold susceptible genotype ILC533). Significant differences were recorded in terms of malondialdehyde (MDA) concentration, electrolyte leakage and proline accumulation in C. microphyllum, as compared to C. arietinum, upon cold exposure (4°C/24h). C. microphyllum exhibits more membrane stability under cold stress. Furthermore, proline overaccumulation and an increase in the enzymatic activities of antioxidants including superoxide dismutase, catalase, and ascorbate peroxidase were also observed in C. microphyllum under cold stress treatment. Expression of pyrroline-5-carboxylate synthetase, chalcone reductase, flavonoid 3',5'-hydroxylase and flavonoid 3'-monooxygenase are all upregulated under cold treatment in C. microphyllum. The characteristics recommend C. microphyllum both as a model for plant response to cold stress and as a potential source for abiotic stress resistant germplasm for chickpea breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

CAT:

catalase

CWR:

crop wild relative

EL:

electrolyte leakage

GR:

glutathione reductase

GSSG:

oxidized glutathione

MDA:

malondialdehyde

OD:

optical density

P5CS-D1:

pyrroline-5-carboxylate synthetase

SOD:

superoxide dismutase

GSSG:

oxidized glutathione

References

  1. Chandra-Hioe, M.V., Wong, C.H.M., and Arcot, J., The potential use of fermented chickpea and faba bean flour as food ingredients, Plant Foods Hum. Nutr., 2016, vol. 71, pp. 90–95.

    Article  CAS  PubMed  Google Scholar 

  2. Shah, T.M., Atta, B.M., Sarwar, Alam, S., Ali, H., Haq, M.A., and Hassan, M., High yielding kabuli mutant chickpea (Cicer arietinum L.) variety “CM 2008,” Pak. J. Bot., 2010, vol. 42, pp. 3533–3545.

    Google Scholar 

  3. Jha, U.C., Chaturvedi, S.K., Bohra, A., Basu, P.S., Khan, M.S., and Barh, D., Abiotic stresses, constraints and improvement strategies in chickpea, Plant Breed., 2014, vol. 133, pp. 163–178.

    Article  Google Scholar 

  4. Bohra, A., Pandey, M.K., Jha, U.C., Singh, B., Singh, I.P., Datta, D., Chaturvedi, S.K., Nadarajan, N., and Varshney, R.K., Genomics-assisted breeding in four major pulse crops of developing countries: present status and prospects, Theor. Appl. Genet., 2014, vol. 127, pp. 1263–1291.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Khoury, C.K., Castañeda-Alvarez, N.P., Achicanoy, H.A., Sosa, C.C., Bernau, V., Kassa, M.T., Norton, S.L., Crop wild relatives of pigeonpea [Cajanus cajan (L.) Millsp.]: distributions, ex situ conservation status, and potential genetic resources for abiotic stress tolerance, Biol. Conserv., 2015, vol. 184, pp. 259–270.

    Article  Google Scholar 

  6. Dar, A.A., Rath, S.K., Qaudri, A., Singh, B., Tasduq, S.A., Kumar, A., and Sangwan, P.L., Isolation, cytotoxic evaluation, and simultaneous quantification of eight bioactive secondary metabolites from Cicer microphyllum by high-performance thin-layer chromatography, J. Sep. Sci., 2015, vol. 38, pp. 4021–4028.

    Article  CAS  PubMed  Google Scholar 

  7. Ma, L., Sun, X., Kong, X., Galvan, J.V., Li, X., Yang, S., Yang, Y., Yang, Y., and Hu, X., Physiological, biochemical and proteomics analysis reveals the adaptation strategies of the alpine plant Potentilla saundersiana at altitude gradient of the Northwestern Tibetan Plateau, J. Proteomics, 2015, vol. 112, pp. 63–82.

    Article  CAS  PubMed  Google Scholar 

  8. Bernal, M., Llorens, L., Julkunen-Tiitto, R., Badosa, J., and Verdaguer, D., Altitudinal and seasonal changes of phenolic compounds in Buxus sempervirens leaves and cuticles, Plant Physiol. Biochem., 2013, vol. 70, pp. 471–482.

    Article  CAS  PubMed  Google Scholar 

  9. Singh, R.K., Singh, S., Pandey, P., Anandhan, S., Goyary, D., Pande, V., and Ahmed, Z., Construction of cold induced subtracted cDNA library from Cicer microphyllum and transcript characterization of identified novel wound induced gene, Protoplasma, 2013, vol. 250, pp. 459–469.

    Article  CAS  PubMed  Google Scholar 

  10. Stoddard, F.L., Balko, C., Erskine, W., Khan, H.R., Link, W., and Sarker, A., Screening techniques and sources of resistance to abiotic stresses in cool-season food legumes, Euphytica, 2006, vol. 147, pp. 167–186.

    Article  Google Scholar 

  11. Roorkiwal, M., von Wettberg, E.J., Upadhyaya, H.D., Warschefsky, E., Rathore, A., Varshney, R.K., and Zhang, T., Exploring germplasm diversity to understand the domestication process in Cicer spp. using SNP and DArT markers, PLoS One, 2014, vol. 9: e102016.

    Google Scholar 

  12. Heath, R.L. and Packer, L., Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation, Arch. Biochem. Biophys., 1968, vol. 125, pp. 189–198.

    Article  CAS  PubMed  Google Scholar 

  13. Bates, L.S., Waldren, R.P., and Teare, I.D., Rapid determination of free proline for water-stress studies, Plant Soil, 1973, vol. 39, pp. 205–207.

    Article  CAS  Google Scholar 

  14. Beyer, W.F. and Fridovich, I., Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions, Anal. Biochem., 1987, vol. 161, pp. 559–566.

    Article  CAS  PubMed  Google Scholar 

  15. Aebi, H., Catalase in vitro, Methods Enzymol., 1984, vol. 105, pp. 121–126.

    Article  CAS  PubMed  Google Scholar 

  16. Foyer, C.H. and Halliwell, B., The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism, Planta, 1976, vol. 133, pp. 21–25.

    Article  CAS  PubMed  Google Scholar 

  17. Bartoli, C.G., Casalongué, C.A., Simontacchi, M., Marquez-Garcia, B., and Foyer, C.H., Interactions between hormone and redox signalling pathways in the control of growth and cross tolerance to stress, Environ. Exp. Bot., 2013, vol. 94, pp. 73–88.

    Article  CAS  Google Scholar 

  18. Shao, H., Chu, L.Y., Shao, M.A., Jaleel, C.A., and Hong-Mei, M., Higher plant antioxidants and redox signaling under environmental stresses, C. R. Biol., 2008, vol. 331, pp. 433–441.

    Article  CAS  PubMed  Google Scholar 

  19. Chen, Y., Jiang, J., Chang, Q., Gu, C., Song, A., Chen, S., Dong, B., and Chen, F., Cold acclimation induces freezing tolerance via antioxidative enzymes, proline metabolism and gene expression changes in two chrysanthemum species, Mol. Biol. Rep., 2014, vol. 41, pp. 815–822.

    Article  CAS  PubMed  Google Scholar 

  20. Zheng, L., Dang, Z., Li, H., Zhang, H., Wu, S., and Wang, Y., Isolation and characterization of a Δ1-pyrroline-5-carboxylate synthetase (NtP5CS) from Nitraria tangutorum Bobr. and functional comparison with its Arabidopsis homologue, Mol. Biol. Rep., 2014, vol. 41, pp. 563–572.

    Article  CAS  PubMed  Google Scholar 

  21. Asada, K., The water–water cycle in chloroplast: scavenging of active oxygens and dissipation of excess photons, Annu. Rev. Plant Biol., 1999, vol. 50, pp. 601–639.

    Article  CAS  Google Scholar 

  22. Torres, M.A., ROS in biotic interactions, Physiol. Plant., 2010, vol. 138, pp. 414–429.

    Article  CAS  PubMed  Google Scholar 

  23. Van Breusegem, F., Vranová, E., Dat, J.F., and Inzé, D., The role of active oxygen species in plant signal transduction, Plant Sci., 2001, vol. 161, pp. 405–414.

    Article  Google Scholar 

  24. Mittler, R., Oxidative stress, antioxidants and stress tolerance, Trends Plant Sci., 2002, vol. 7, pp. 405–410.

    Article  CAS  PubMed  Google Scholar 

  25. Zobayed, S.M.A., Afreen, F., and Kozai, T., Temperature stress can alter the photosynthetic efficiency and secondary metabolite concentrations in St. John’s wort, Plant Physiol. Biochem., 2005, vol. 43, pp. 977–984.

    Article  CAS  PubMed  Google Scholar 

  26. Guillet, G., Podeszfinski, C., Regnault-Roger, C., Arnason, J.T., and Philogène, B.J.R., Behavioral and biochemical adaptations of generalist and specialist herbivorous insects feeding on Hypericum perforatum (Guttiferae), Environ. Entomol., 2000, vol. 29, pp. 135–139.

    Article  CAS  Google Scholar 

  27. Pan, H., Li, X., Cheng, X., Wang, X., Fang, C., Zhou, T., and Chen, J., Evidence of calycosin-7-O- β-d-glucoside’s role as a major antioxidant molecule of Astragalus membranaceus Bge. var. mongholicus (Bge.) Hsiao plants under freezing stress, Environ. Exp. Bot., 2015, vol. 109, pp. 1–11.

    Article  Google Scholar 

  28. Xu, J., Li, Y., Sun, J., Du, L., Zhang, Y., Yu, Q., and Liu, X., Comparative physiological and proteomic response to abrupt low temperature stress between two winter wheat cultivars differing in low temperature tolerance, Plant Biol., 2013, vol. 15, pp. 292–303.

    Article  CAS  PubMed  Google Scholar 

  29. Ahmed, I.M., Nadira, U.A., Bibi, N., Cao, F., He, X., Zhang, G., and Wu, F., Secondary metabolism and antioxidants are involved in the tolerance to drought and salinity, separately and combined, in Tibetan wild barley, Environ. Exp. Bot., 2015, vol. 111, pp. 1–12.

    Article  CAS  Google Scholar 

  30. Rana, J.C., Pradheep, K., Chaurasia, O.P., Sood, S., Sharma, R.M., Singh, A., and Negi, R., Genetic resources of wild edible plants and their uses among tribal communities of cold arid region of India, Genet. Resour. Crop Evol., 2012, vol. 59, pp. 135–149.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Ruiz-May.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R.K., Singh, S., Anandhan, S. et al. First insights into the biochemical and molecular response to cold stress in Cicer microphyllum, a crop wild relative of chickpea (Cicer arietinum). Russ J Plant Physiol 64, 758–765 (2017). https://doi.org/10.1134/S1021443717050120

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443717050120

Keywords

Navigation