Russian Journal of Plant Physiology

, Volume 64, Issue 5, pp 758–765 | Cite as

First insights into the biochemical and molecular response to cold stress in Cicer microphyllum, a crop wild relative of chickpea (Cicer arietinum)

  • R. K. Singh
  • S. Singh
  • S. Anandhan
  • L. M. Shannon
  • F. R. Quiroz-Figueroa
  • E. Ruiz-May
Research Papers


Identifying a potential crop wild relative (CWR) of legumes, especially one with high abiotic stress tolerance, has been a priority of plant breeders for many decades. Traditionally CWRs have been selected based on biometrical traits observed in the field, however this methodology is insufficient for research into nonmorphological traits such as stress tolerance. Biochemical and molecular analysis of potential CWRs allows for more informed selection. Specifically, we focus on Cicer microphyllum Benth, a CWR of cultivated chickpea Cicer arietinum L., which is distributed in Trans Himalayan ranges adjacent to glaciers of India and Pakistan at the alpine altitude gradient between 2700 to 6000 m. The objective of this study is to begin characterization of the biochemical and molecular bases of adaptation of C. microphyllum to cold stress and compare it to its cultivated relative (Cold susceptible genotype ILC533). Significant differences were recorded in terms of malondialdehyde (MDA) concentration, electrolyte leakage and proline accumulation in C. microphyllum, as compared to C. arietinum, upon cold exposure (4°C/24h). C. microphyllum exhibits more membrane stability under cold stress. Furthermore, proline overaccumulation and an increase in the enzymatic activities of antioxidants including superoxide dismutase, catalase, and ascorbate peroxidase were also observed in C. microphyllum under cold stress treatment. Expression of pyrroline-5-carboxylate synthetase, chalcone reductase, flavonoid 3',5'-hydroxylase and flavonoid 3'-monooxygenase are all upregulated under cold treatment in C. microphyllum. The characteristics recommend C. microphyllum both as a model for plant response to cold stress and as a potential source for abiotic stress resistant germplasm for chickpea breeding programs.


Cicer microphyllum Cicer arietinum anti-oxidant enzymes cold treatment isoflavonoid proline 



ascorbate peroxidase




crop wild relative


electrolyte leakage


glutathione reductase


oxidized glutathione




optical density


pyrroline-5-carboxylate synthetase


superoxide dismutase


oxidized glutathione


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Chandra-Hioe, M.V., Wong, C.H.M., and Arcot, J., The potential use of fermented chickpea and faba bean flour as food ingredients, Plant Foods Hum. Nutr., 2016, vol. 71, pp. 90–95.CrossRefPubMedGoogle Scholar
  2. 2.
    Shah, T.M., Atta, B.M., Sarwar, Alam, S., Ali, H., Haq, M.A., and Hassan, M., High yielding kabuli mutant chickpea (Cicer arietinum L.) variety “CM 2008,” Pak. J. Bot., 2010, vol. 42, pp. 3533–3545.Google Scholar
  3. 3.
    Jha, U.C., Chaturvedi, S.K., Bohra, A., Basu, P.S., Khan, M.S., and Barh, D., Abiotic stresses, constraints and improvement strategies in chickpea, Plant Breed., 2014, vol. 133, pp. 163–178.CrossRefGoogle Scholar
  4. 4.
    Bohra, A., Pandey, M.K., Jha, U.C., Singh, B., Singh, I.P., Datta, D., Chaturvedi, S.K., Nadarajan, N., and Varshney, R.K., Genomics-assisted breeding in four major pulse crops of developing countries: present status and prospects, Theor. Appl. Genet., 2014, vol. 127, pp. 1263–1291.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Khoury, C.K., Castañeda-Alvarez, N.P., Achicanoy, H.A., Sosa, C.C., Bernau, V., Kassa, M.T., Norton, S.L., Crop wild relatives of pigeonpea [Cajanus cajan (L.) Millsp.]: distributions, ex situ conservation status, and potential genetic resources for abiotic stress tolerance, Biol. Conserv., 2015, vol. 184, pp. 259–270.CrossRefGoogle Scholar
  6. 6.
    Dar, A.A., Rath, S.K., Qaudri, A., Singh, B., Tasduq, S.A., Kumar, A., and Sangwan, P.L., Isolation, cytotoxic evaluation, and simultaneous quantification of eight bioactive secondary metabolites from Cicer microphyllum by high-performance thin-layer chromatography, J. Sep. Sci., 2015, vol. 38, pp. 4021–4028.CrossRefPubMedGoogle Scholar
  7. 7.
    Ma, L., Sun, X., Kong, X., Galvan, J.V., Li, X., Yang, S., Yang, Y., Yang, Y., and Hu, X., Physiological, biochemical and proteomics analysis reveals the adaptation strategies of the alpine plant Potentilla saundersiana at altitude gradient of the Northwestern Tibetan Plateau, J. Proteomics, 2015, vol. 112, pp. 63–82.CrossRefPubMedGoogle Scholar
  8. 8.
    Bernal, M., Llorens, L., Julkunen-Tiitto, R., Badosa, J., and Verdaguer, D., Altitudinal and seasonal changes of phenolic compounds in Buxus sempervirens leaves and cuticles, Plant Physiol. Biochem., 2013, vol. 70, pp. 471–482.CrossRefPubMedGoogle Scholar
  9. 9.
    Singh, R.K., Singh, S., Pandey, P., Anandhan, S., Goyary, D., Pande, V., and Ahmed, Z., Construction of cold induced subtracted cDNA library from Cicer microphyllum and transcript characterization of identified novel wound induced gene, Protoplasma, 2013, vol. 250, pp. 459–469.CrossRefPubMedGoogle Scholar
  10. 10.
    Stoddard, F.L., Balko, C., Erskine, W., Khan, H.R., Link, W., and Sarker, A., Screening techniques and sources of resistance to abiotic stresses in cool-season food legumes, Euphytica, 2006, vol. 147, pp. 167–186.CrossRefGoogle Scholar
  11. 11.
    Roorkiwal, M., von Wettberg, E.J., Upadhyaya, H.D., Warschefsky, E., Rathore, A., Varshney, R.K., and Zhang, T., Exploring germplasm diversity to understand the domestication process in Cicer spp. using SNP and DArT markers, PLoS One, 2014, vol. 9: e102016.Google Scholar
  12. 12.
    Heath, R.L. and Packer, L., Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation, Arch. Biochem. Biophys., 1968, vol. 125, pp. 189–198.CrossRefPubMedGoogle Scholar
  13. 13.
    Bates, L.S., Waldren, R.P., and Teare, I.D., Rapid determination of free proline for water-stress studies, Plant Soil, 1973, vol. 39, pp. 205–207.CrossRefGoogle Scholar
  14. 14.
    Beyer, W.F. and Fridovich, I., Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions, Anal. Biochem., 1987, vol. 161, pp. 559–566.CrossRefPubMedGoogle Scholar
  15. 15.
    Aebi, H., Catalase in vitro, Methods Enzymol., 1984, vol. 105, pp. 121–126.CrossRefPubMedGoogle Scholar
  16. 16.
    Foyer, C.H. and Halliwell, B., The presence of glutathione and glutathione reductase in chloroplasts: a proposed role in ascorbic acid metabolism, Planta, 1976, vol. 133, pp. 21–25.CrossRefPubMedGoogle Scholar
  17. 17.
    Bartoli, C.G., Casalongué, C.A., Simontacchi, M., Marquez-Garcia, B., and Foyer, C.H., Interactions between hormone and redox signalling pathways in the control of growth and cross tolerance to stress, Environ. Exp. Bot., 2013, vol. 94, pp. 73–88.CrossRefGoogle Scholar
  18. 18.
    Shao, H., Chu, L.Y., Shao, M.A., Jaleel, C.A., and Hong-Mei, M., Higher plant antioxidants and redox signaling under environmental stresses, C. R. Biol., 2008, vol. 331, pp. 433–441.CrossRefPubMedGoogle Scholar
  19. 19.
    Chen, Y., Jiang, J., Chang, Q., Gu, C., Song, A., Chen, S., Dong, B., and Chen, F., Cold acclimation induces freezing tolerance via antioxidative enzymes, proline metabolism and gene expression changes in two chrysanthemum species, Mol. Biol. Rep., 2014, vol. 41, pp. 815–822.CrossRefPubMedGoogle Scholar
  20. 20.
    Zheng, L., Dang, Z., Li, H., Zhang, H., Wu, S., and Wang, Y., Isolation and characterization of a Δ1-pyrroline-5-carboxylate synthetase (NtP5CS) from Nitraria tangutorum Bobr. and functional comparison with its Arabidopsis homologue, Mol. Biol. Rep., 2014, vol. 41, pp. 563–572.CrossRefPubMedGoogle Scholar
  21. 21.
    Asada, K., The water–water cycle in chloroplast: scavenging of active oxygens and dissipation of excess photons, Annu. Rev. Plant Biol., 1999, vol. 50, pp. 601–639.CrossRefGoogle Scholar
  22. 22.
    Torres, M.A., ROS in biotic interactions, Physiol. Plant., 2010, vol. 138, pp. 414–429.CrossRefPubMedGoogle Scholar
  23. 23.
    Van Breusegem, F., Vranová, E., Dat, J.F., and Inzé, D., The role of active oxygen species in plant signal transduction, Plant Sci., 2001, vol. 161, pp. 405–414.CrossRefGoogle Scholar
  24. 24.
    Mittler, R., Oxidative stress, antioxidants and stress tolerance, Trends Plant Sci., 2002, vol. 7, pp. 405–410.CrossRefPubMedGoogle Scholar
  25. 25.
    Zobayed, S.M.A., Afreen, F., and Kozai, T., Temperature stress can alter the photosynthetic efficiency and secondary metabolite concentrations in St. John’s wort, Plant Physiol. Biochem., 2005, vol. 43, pp. 977–984.CrossRefPubMedGoogle Scholar
  26. 26.
    Guillet, G., Podeszfinski, C., Regnault-Roger, C., Arnason, J.T., and Philogène, B.J.R., Behavioral and biochemical adaptations of generalist and specialist herbivorous insects feeding on Hypericum perforatum (Guttiferae), Environ. Entomol., 2000, vol. 29, pp. 135–139.CrossRefGoogle Scholar
  27. 27.
    Pan, H., Li, X., Cheng, X., Wang, X., Fang, C., Zhou, T., and Chen, J., Evidence of calycosin-7-O- β-d-glucoside’s role as a major antioxidant molecule of Astragalus membranaceus Bge. var. mongholicus (Bge.) Hsiao plants under freezing stress, Environ. Exp. Bot., 2015, vol. 109, pp. 1–11.CrossRefGoogle Scholar
  28. 28.
    Xu, J., Li, Y., Sun, J., Du, L., Zhang, Y., Yu, Q., and Liu, X., Comparative physiological and proteomic response to abrupt low temperature stress between two winter wheat cultivars differing in low temperature tolerance, Plant Biol., 2013, vol. 15, pp. 292–303.CrossRefPubMedGoogle Scholar
  29. 29.
    Ahmed, I.M., Nadira, U.A., Bibi, N., Cao, F., He, X., Zhang, G., and Wu, F., Secondary metabolism and antioxidants are involved in the tolerance to drought and salinity, separately and combined, in Tibetan wild barley, Environ. Exp. Bot., 2015, vol. 111, pp. 1–12.CrossRefGoogle Scholar
  30. 30.
    Rana, J.C., Pradheep, K., Chaurasia, O.P., Sood, S., Sharma, R.M., Singh, A., and Negi, R., Genetic resources of wild edible plants and their uses among tribal communities of cold arid region of India, Genet. Resour. Crop Evol., 2012, vol. 59, pp. 135–149.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • R. K. Singh
    • 1
    • 2
  • S. Singh
    • 1
    • 2
  • S. Anandhan
    • 1
    • 3
  • L. M. Shannon
    • 4
  • F. R. Quiroz-Figueroa
    • 5
  • E. Ruiz-May
    • 6
  1. 1.Department of BiotechnologyDIBER, DRDONainitalIndia
  2. 2.Centre for the Research and Technology of Agro-Environment and Biological Sciences (CITAB)University of MinhoBragaPortugal
  3. 3.Directorate of Onion and Garlic ResearchRajgurunagar, PuneIndia
  4. 4.Department of HorticultureUniversity of WisconsinMadisonUSA
  5. 5.Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación Para el Desarrollo Integral Regional Unidad Sinaloa (CIIDIR-IPN Unidad Sinaloa), Laboratorio de Fitomejoramiento MolecularGuasaveMexico
  6. 6.Red de Estudios Moleculares AvanzadosInstituto de Ecología A. C., Cluster BioMimic®XalapaMexico

Personalised recommendations