Skip to main content
Log in

Ethylene-dependent adjustment of metabolite profiles in Arabidopsis thaliana seedlings during gravitropic response

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Metabolite profile adjustments under impact of ethylene synthesis inhibitors were studied in Arabidopsis thaliana (L.) Heynh. seedlings during reorientation of plants relative to the gravity vector (gravistimulation). Metabolite profiles were compared with Principal Component Analysis. We have shown that significant changes in metabolite profiles developed within 60 min of gravistimulation and were most pronounced in 2 mm root tips including the root cap, apical meristem and elongation zone. Gravistimulation resulted in the increased levels of valine, leucine, serine, γ-aminobutyric acid, nicotinic acid, and decreased levels of several monosaccharides, malate and oxalate. Treatment with ethylene synthesis inhibitor, aminoethoxyvinylglycine (10 μM), escaped the effect of gravistimulation on root tip metabolite profile. Metabolite profile adjustments revealed in this study suggest that ethylene may be involved into the regulation of Arabidopsis metabolome during the gravitropic response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ACC:

1-aminocyclopropane-1-carboxylic acid

AVG:

L-α-(2-Aminoethoxyvinyl)glycine

GC/MS:

gas chromatography–mass-spectrometry

PC:

principal component

PCA:

principal component analysis

SA:

salicylic acid

References

  1. Medvedev, S.S., Mechanisms and physiological role of polarity in plants, Russ. J. Plant Physiol., 2012, vol. 59, pp. 502–514.

    Article  CAS  Google Scholar 

  2. Morita, M.T. and Tasaka, M., Gravity sensing and signaling, Curr. Opin. Plant Biol., 2004, vol. 7, pp. 712–718.

    Article  CAS  PubMed  Google Scholar 

  3. Schüler, O., Hemmersbach, R., and Böhmer, M., A bird’s-eye view of molecular changes in plant gravitropism using omics techniques, Front. Plant Sci., 2015, vol. 6, pp. 1176–1188.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kolesnikov, Y.S., Kretynin, S.V., Volotovsky, I.D., Kordyum, E.L., Ruelland, E., and Kravets, V.S., Molecular mechanisms of gravity perception and signal transduction in plants, Protoplasma, 2016, vol. 253, pp. 987–1004.

    Article  CAS  PubMed  Google Scholar 

  5. Ischebeck, T., Werner, S., Krishnamoorthy, P., Lerche, J., Meijón, M., Stenzel, I., Löfke, C., Wiessner, T., Im, Y.J., Perera, I.Y., Iven, T., Feussner, I., Busch, W., Boss, W.F., Teichmann, T., et al., Phosphatidylinositol 4,5-bisphosphate influences PIN polarization by controlling clathrin-mediated membrane trafficking in Arabidopsis, Plant Cell, 2013, vol. 12, pp. 4894–4911.

    Article  Google Scholar 

  6. Buer, C.S., Sukumar, P., and Muday, G.K., Ethylene modulates flavonoid accumulation and gravitropic responses in roots of Arabidopsis, Plant Physiol., 2006, vol. 140, pp. 1384–1396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Millar, K.D. and Kiss, J.Z., Analyses of tropistic responses using metabolomics, Am. J. Bot., 2013, vol. 100, pp. 79–90.

    Article  CAS  PubMed  Google Scholar 

  8. Blancaflor, E.B., Regulation of plant gravity sensing and signaling by the actin cytoskeleton, Am. J. Bot., 2013, vol. 100, pp. 143–152.

    Article  CAS  PubMed  Google Scholar 

  9. Swarup, R., Perry, P., Hagenbeek, D., van der Straeten, D., Beemster, G.T., Sandberg, G., Bhalerao, R., Ljung, K., and Bennett, M.J., Ethylene upregulates auxin biosynthesis in Arabidopsis seedlings to enhance inhibition of root cell elongation, Plant Cell, 2007, vol. 19, pp. 2186–2196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Neljubov, D., Über die horizontale Nutation der Stengel von Pisum sativum und einiger anderen Pflanzen, Beitr. Bot. Zentralbl., 1901, vol. 10, pp. 128–139.

    Google Scholar 

  11. Shulaev, V., Metabolomics technology and bioinformatics, Brief Bioinform., 2006, vol. 7, pp. 128–139.

    Article  CAS  PubMed  Google Scholar 

  12. Smolikova, G.N., Shavarda, A.L., Alekseichuk, I.V., Chantseva, V.V., and Medvedev, S.S., The metabolomic approach to the assessment of cultivar specificity of Brassica napus L. seeds, Russ. J. Genet.: Appl. Res., 2016, vol. 6, pp. 78–83.

    Article  CAS  Google Scholar 

  13. Shender, V.O., Pavlyukov, M.S., Ziganshin, R.H., Arapidi, G.P., Kovalchuk, S.I., Anikanov, N.A., Altukhov, I.A., Alexeev, D.G., Butenko, I.O., Shavarda, A.L., Khomyakova, E.B., Evtushenko, E., Ashrafyan, L.A., Antonova, I.B., Kuznetcov, I.N., et al., Proteome-metabolome profiling of ovarian cancer ascites reveals novel components involved in intercellular communication, Mol. Cell. Proteomics, 2014, vol. 13, pp. 3558–3571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Leslie, C.A. and Romani, R.J., Inhibition of ethylene biosynthesis by salicylic acid, Plant Physiol., 1988, vol. 88, pp. 833–837.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Medvedev, S.S. and Markova, I.V., The involvement of salicylic acid into gravitropism regulation in plants, Dokl. Akad. Nauk SSSR, 1991, vol. 316, pp. 1014–1016.

    CAS  Google Scholar 

  16. Verbelen, J.P., Cnodder, T.D., Le, J., Vissenberg, K., and Baluška, F., The root apex of Arabidopsis thaliana consists of four distinct zones of growth activities, Plant Signal. Behav., 2006, vol. 1, pp. 296–304.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Band, L.R., Wells, D.M., Larrieu, A., Sun, J., Middleton, A.M., French, A.P., Brunoud, G., Sato, E.M., Wilson, M.H., Peret, B., Oliva, M., Swarup, R., Sairanen, I., Parry, G., Ljung, K., et al., Root gravitropism is regulated by a transient lateral auxin gradient controlled by a tipping-point mechanism, Proc. Natl. Acad. Sci. USA, 2012, vol. 109, pp. 4668–4673.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sato, E.M., Hijazi, H., Bennett, M.J., Vissenberg, K., and Swarup, R., New insights into root gravitropic signaling, J. Exp. Bot., 2015, vol. 66, pp. 2155–2165.

    Article  CAS  PubMed  Google Scholar 

  19. Aubry-Hivet, D., Nziengui, H., Rapp, K., Oliveira, O., Paponov, I.A., Li, Y., Hauslage, J., Vagt, N., Braun, M., Ditengou, F.A., Dovzhenko, A., and Palme, K., Analysis of gene expression during parabolic flights reveals distinct early gravity responses in Arabidopsis roots, Plant Biol., 2014, vol. 16, pp. 129–141.

    Article  PubMed  Google Scholar 

  20. Schenck, C.A., Nadella, V., Clay, S.L., Lindner, J., Abrams, Z., and Wyatt, S.E., A proteomics approach identifies novel proteins involved in gravitropic signal transduction, Am. J. Bot., 2013, vol. 100, pp. 194–202.

    Article  CAS  PubMed  Google Scholar 

  21. Andreeva, Z., Barton, D., Armour, W.J., Li, M.Y., Liao, F., McKellar, H.L., Pethybridge, K.A., and Marc, J., Inhibition of phospholipase C disrupts cytoskeletal organization and gravitropic growth in Arabidopsis roots, Planta, 2010, vol. 232, pp. 1263–1279.

    Article  CAS  PubMed  Google Scholar 

  22. Madlung, A., Behringer, F.J., and Lomax, T.L., Ethylene plays multiple nonprimary roles in modulating the gravitropic response in tomato, Plant Physiol., 1999, vol. 120, pp. 897–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Strader, L.C., Chen, G.L., and Bartel, B., Ethylene directs auxin to control root cell expansion, Plant J., 2010, vol. 64, pp. 874–884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chang, S.C., Kim, Y., Lee, J.Y., Kaufman, P.B., Kirakosyan, A., Yun, H.S., Kim, T., Kim, S.Y., Cho, M.H., Lee, J.S., and Kim, S., Brassinolide interacts with auxin and ethylene in the root gravitropic response of maize (Zea mays), Physiol. Plant., 2004, vol. 121, pp. 666–673.

    Article  CAS  Google Scholar 

  25. Watanabe, K., Fujita, T., and Takimoto, A., Relationship between structure and flower-inducing activity of benzoic acid derivatives in Lemna paucicostata, Plant Cell Physiol., 1981, vol. 22, pp. 1469–1479.

    Article  CAS  Google Scholar 

  26. Fan, X., Matteis, J.P., and Fellman, J.K., Inhibition of apple fruit 1-arninocyclopropane-1-carboxylate oxidase activity and respiration by acetylsalicylic acid, J. Plant Physiol., 1996, vol. 149, pp. 469–471.

    Article  CAS  Google Scholar 

  27. Lee, J.H., Jin, E.S., and Kim, W.T., Inhibition of auxin-induced ethylene production by salicylic acid in mung bean hypocotyls, J. Plant Biol., 1999, vol. 42, pp. 1–7.

    Article  Google Scholar 

  28. Rivas-San, Vicente, M. and Plasencia, J., Salicylic acid beyond defence: its role in plant growth and development, J. Exp. Bot., 2011, vol. 62, pp. 3321–3338.

    Article  Google Scholar 

  29. Du, Y., Tejos, R., Beck, M., Himschoot, E., Li, H., Robatzek, S., Vanneste, S., and Friml, J., Salicylic acid interferes with clathrin-mediated endocytic protein trafficking, Proc. Natl. Acad. Sci. USA, 2013, vol. 110, pp. 7946–7951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pozhvanov, G.A., Gobova, A.E., Bankin, M.P., Vissenberg, K., and Medvedev, S.S., Ethylene is involved in the actin cytoskeleton rearrangement during the root gravitropic response of Arabidopsis thaliana, Russ. J. Plant Physiol., 2016, vol. 63, pp. 587–596.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Pozhvanov.

Additional information

Published in Russian in Fiziologiya Rastenii, 2017, Vol. 64, No. 6, pp. 446–460.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pozhvanov, G.A., Klimenko, N.S., Bilova, T.E. et al. Ethylene-dependent adjustment of metabolite profiles in Arabidopsis thaliana seedlings during gravitropic response. Russ J Plant Physiol 64, 906–918 (2017). https://doi.org/10.1134/S1021443717050090

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443717050090

Keywords

Navigation