Skip to main content
Log in

Separate and combined effects of silicon and selenium on salt tolerance of wheat plants

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Soil salinity is the leading global abiotic stress which limits agricultural production with an annual increment of 10%. Therefore; a pot experiment was conducted with the aim to alleviate the salinity effects on wheat seedlings through exogenous application of silicon (Si) and selenium (Se). Treatments included in the study were viz. (Ck) control (no NaCl nor Si and Se added), only salinity (50 mM NaCl), salinity + Si (50 mM NaCl with 40 mM Si), salinity + Se (50 mM NaCl with 40 mM Se) and salinity + Si + Se (50 mM NaCl + 40 mM Si + 40 mM Si). The salt stress impaired the growth (root and shoot dry weight, root: shoot ratio, seedlings biomass), water relations, photosynthetic attributes, transpiration rate and chlorophyll contents of wheat seedlings. Nonetheless, the foliar application of Si and Se alone and in combination improved the growth, water relations, photosynthetic attributes, transpiration rate and chlorophyll contents of wheat seedlings under stressed conditions. Moreover, an increase in antioxidant enzyme activity and accumulation of osmo-protectants (proline, soluble protein and soluble sugar) was noted under stressed conditions, which was more pronounced in wheat seedling which experienced combined application of Si and Se. To conclude that, foliar application of Si alone mitigated the adverse effect of salinity, while the combined application of Si and Se was proved to be even more effective in alleviating the toxic effects of salinity stress on wheat seedlings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

CAT:

catalase

LPO:

lipid peroxidation

NR:

nitrate reductase

POD:

peroxidase

ROS:

reactive oxygen species

RWC:

relative water contents

SOD:

superoxide dismutase

References

  1. Farooq, M., Hussain, M., Wakeel, A., and Siddique, K.H.M., Salt stress in maize: effects, resistance mechanisms, and management. A review, Agron. Sustainable. Dev., 2015, vol. 35, pp. 461–481.

    Article  CAS  Google Scholar 

  2. Fricke, W., Akhiyarova, G., Veselov, D., and Kudoyarova, G., Rapid and tissue-specific changes in ABA and in growth rate in response to salinity in barley leaves, J. Exp. Bot., 2004, vol. 55, pp. 1115–1123.

    Article  CAS  PubMed  Google Scholar 

  3. Moldovan, L. and Moldovan, N.I., Oxygen free radicals and redox biology of organelles, Histochem. Cell Biol., 2004, vol. 122, pp. 395–412.

    Article  CAS  PubMed  Google Scholar 

  4. Guerfel, M., Baccouri, O., Boujnah, D., Chaibi, W., and Zarrouk, M., Impacts of water stress on gas exchange, water relations, chlorophyll content and leaf structure in the two main Tunisian olive (Olea europaea L.) cultivars, Sci. Hortic., 2009, vol. 119, pp. 257–263.

    Article  CAS  Google Scholar 

  5. Hasanuzzaman, M. and Fujita, M., Selenium pretreatment up-regulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings, Biol. Trace Elem. Res., 2011, vol. 143, pp. 1758–1776.

    Article  CAS  PubMed  Google Scholar 

  6. Gall, H.L., Philippe, F., Domon, J.M., Gillet, F., Pelloux, J., and Rayon, C., Cell wall metabolism in response to abiotic stress, Plants, 2015, vol. 4, pp. 112–166.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Romero-Arnada, M.R., Jourado, O., and Cuartero, J., Silicon alleviates the deleterious salt effects on tomato plant growth by improving plant water status, J. Plant Physiol., 2006, vol. 163, pp. 847–855.

    Article  Google Scholar 

  8. Liang, Y.C., Chen, Q., Liu, Q., Zhang, W., and Ding, R., Effects of silicon on salinity tolerance of two barley genotypes, J. Plant Physiol., 2003, vol. 160, pp. 1157–1164.

    Article  CAS  PubMed  Google Scholar 

  9. Kong, L., Wang, M., and Bi, D., Selenium modulates the activities of antioxidant enzymes, osmotic homeostasis and promotes the growth of sorrel seedlings under salt stress, Plant Growth Regul., 2005, vol. 45, pp. 155–163.

    Article  CAS  Google Scholar 

  10. Aspila, P., History of selenium supplemented fertilization in Finland, in Twenty Years of Selenium Fertilization, Merja Eurola, Ed., Helsinki: Agrifood Res. Rep., 2005, pp. 8–13.

    Google Scholar 

  11. Barrs, H.D. and Weatherley, P.E., A re-examination of the relative turgidity technique for estimating water deficits in leaves, Aust. J. Biol. Sci., 1962, vol. 15, pp. 413–428.

    Article  Google Scholar 

  12. Arnon, D.T., Copper enzyme in isolated chloroplasts polyphenoloxidase in Beta vulgaris, Plant Physiol., 1949, vol. 24, pp. 1–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sambrook, J. and Russell, D.W., Protein interaction technologies, in Molecular Cloning: A Laboratory Manual, Cold Spring Harbor: Cold Spring Harbor Lab., 2001, ch. 18.

    Google Scholar 

  14. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding, Ann. Biochem., 1976, vol. 72, pp. 248–254.

    Article  CAS  Google Scholar 

  15. Giannopolitis, C.N. and Ries, S.K., Superoxide dismutase. I. Occurrence in higher plants, Plant Physiol., 1977, vol. 59, pp. 309–314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chance, M. and Maehly, A.C., Assay of catalases and peroxidases, Methods Enzymol., 1955, vol. 2, pp. 764–775.

    Article  Google Scholar 

  17. Kara, M. and Mishra, D., Catalase, peroxidase, polyphenoloxidase activities during since leaf senescence, Plant Physiol., 1976, vol. 54, pp. 315–319.

    Article  Google Scholar 

  18. Jaworski, E.K., Nitrate reductase assay in intact plant tissues, Biochem. Biophys. Res. Commun., 1971, vol. 43, pp. 1274–1279.

    Article  CAS  PubMed  Google Scholar 

  19. Simaei, M., Khavarinejad, R.A., Saadatmand, S., Bernard, F., and Fahimi, H., Interactive effects of salicylic acid and nitric oxide on soybean plants under NaCl salinity, Russ. J. Plant Physiol., 2001, vol. 5, pp. 783–790.

    Google Scholar 

  20. Giannakoula, A., Moustakas, M., Mylona, P., Ioannis, P., and Traianos, Y., Aluminium tolerance in maize is correlated with increased levels of mineral nutrients, carbohydrates and proline and decreased levels of lipid peroxidation and Al accumulation, J. Plant Physiol., 2008, vol. 165, pp. 385–396.

    Article  CAS  PubMed  Google Scholar 

  21. Steel, R.G.D., Torrie, J.H., and Dickey, D.A., Principles and Procedures of Statistics: A Biometrical Approach, New York: McGraw-Hill, 1997.

    Google Scholar 

  22. Farooq, M., Hussain, M., Wahid, A., and Siddique, K.H.M., Drought stress in plants: an overview, in Plant Responses to Drought Stress: From Morphological to Molecular Features, Aroca, R., Ed., Berlin: Springer-Verlag, 2012, ch. 1, pp. 1–36.

    Chapter  Google Scholar 

  23. Epstein, E., The anomaly of silicon in plant biology, Proc. Natl. Acad. Sci. USA, 1994, vol. 91, pp. 11–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Isa, M., Bai, S., Yokoyama, T., Ma, J.F., Ishibashi, Y., Yuasa, T., and Iwaya-Inoue, M., Silicon enhances growth independent of silica deposition in a low-silica rice mutant, lsi1, Plant Soil, 2010, vol. 331, pp. 361–375.

    Article  CAS  Google Scholar 

  25. Kahakachchi, C., Boakye, H.T., Uden, P.C., and Tyson, J.F., Chromatographic speciation of anionic and neutral selenium compounds in Se-accumulating Brassica juncea (Indian mustard) and in selenized yeast, J. Chromatogr. A, 2004, vol. 1054, pp. 303–312.

    Article  CAS  PubMed  Google Scholar 

  26. Qados, A.M.S.A., Mechanism of nanosilicon-mediated alleviation of salinity stress in faba bean (Vicia faba L.) plants, Am. J. Exp. Agric., 2015, vol. 7, no. 2, pp. 78–95.

    Article  Google Scholar 

  27. Wang, C.Q., Water-stress mitigation by selenium in Trifolium repens L., J. Plant Nutr. Soil Sci., 2011, vol. 174, no. 2, pp. 276–282.

    Article  CAS  Google Scholar 

  28. Shen, X., Zhou, Y., Duan, L., Li, Z., Eneji, A.E., and Li, J., Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation, J. Plant Physiol., 2010, vol. 167, pp. 1248–1252.

    Article  CAS  PubMed  Google Scholar 

  29. Sattar, A., Cheema, M.A., Ali, H., Sher, A., Ijaz, M., Hussain, M., Hassan, W., and Abbas, T., Silicon mediates the changes in water relations, photosynthetic pigments, enzymatic antioxidants activity and nutrient uptake in maize seedling under salt stress, Grassland Sci., 2016, vol. 62, pp. 262–269.

    Article  CAS  Google Scholar 

  30. Nwugo, C.C. and Huerta, A.J., The effect of silicon on the leaf proteome of rice (Oryza sativa L.) plants under cadmium-stress, J. Proteome Res., 2011, vol. 10, pp. 518–528.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sattar.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sattar, A., Cheema, M.A., Abbas, T. et al. Separate and combined effects of silicon and selenium on salt tolerance of wheat plants. Russ J Plant Physiol 64, 341–348 (2017). https://doi.org/10.1134/S1021443717030141

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443717030141

Keywords

Navigation