Skip to main content

Drought Stress in Plants: An Overview

  • Chapter
  • First Online:
Plant Responses to Drought Stress

Abstract

Drought is one of the major constraints limiting crop production worldwide. Crop growth models predict that this issue will be more severe in future. Drought impairs normal growth, disturbs water relations, and reduces water use efficiency in plants. Plants, however, have a variety of physiological and biochemical responses at cellular and whole organism levels, making it a more complex phenomenon. The rate of photosynthesis is reduced mainly by stomatal closure, membrane damage, and disturbed activity of various enzymes, especially those involved in ATP synthesis. Plants display a range of mechanisms to withstand drought, such as reduced water loss by increased diffusive resistance, increased water uptake with prolific and deep root systems, and smaller and succulent leaves to reduce transpirational loss. Low-molecular-weight osmolytes, including glycinebetaine, proline and other amino acids, organic acids, and polyols also play vital roles in sustaining cellular functions under drought. Plant growth substances such as salicylic acid, auxins, gibberellins, cytokinins, and abscisic acid modulate plant responses toward drought. Polyamines, citrulline, and several enzymes act as antioxidants and reduce adverse effects of water deficit. Plant drought stress can be managed by adopting strategies such as mass screening and breeding, marker-assisted selection, and exogenous application of hormones and osmoprotectants to seeds or growing plants, as well as engineering for drought resistance. Here, we provide an overview of plant drought stress, its effects on plants’ resistance mechanisms and management strategies to cope with drought stress.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ABA:

Abscisic acid

ADC2:

Arginine decarboxlase 2 gene

Amax :

Maximum photosynthetic efficiency

APX:

Ascorbate peroxidase

BRs:

Brassinolides

CAT:

Catalase

chl:

Chlorophyll

Cks:

Cytokinins

DRE/CRT:

Dehydration-responsive element/C-repeat

DREB:

Dehydration-responsive element binding proteins

EBR:

Epibrassinolide

ETC:

Electron transport chain

GA3 :

Gibberellins

GB:

Glycinebetaine

GR:

Glutathione reductase

H+-ATPase:

Hydrogen pump ATPase protein

H2O2 :

Hydrogen peroxide

IAA:

Indole acetic acid

K:

Potassium

LAI:

Leaf area index

LEA:

Late embryogenesis abundant

N:

Nitrogen

O2 :

Superoxide radicals

O 12 :

Single oxygen

OH :

Hydroxyl radicals

OsRDCPs:

Oryza sativa RING domain-containing proteins

P:

Phosphorous

PA:

Polyamine

PAL:

Phenylalanine ammonia-lyase

POX:

Peroxidase

PPO:

Polyphenol oxidase

PSI:

Photosystem I

PSII:

Photosystem II

QTL:

Quantitative trait loci

RO:

Alkoxy radicals

ROS:

Reactive oxygen species

Rubisco:

Ribulose-1,5-bisphosphate carboxylase/oxygenase

RuBP:

Ribulose-1,5-bisphosphate

RWC:

Relative water contents

SA:

Salicylic acid

Si:

Silicon

SOD:

Superoxide dismutase

TcADC:

Arginine decarboxylase

TcODC:

Ornithine decarboxylase

TcSAMDC:

S-adenosylmethionine decarboxylase

TcSPDS:

Spermidine synthase

TcSPMS:

Spermine synthase

Vc,max :

Carboxylation velocity of Rubisco

WUE:

Water use efficiency

References

  • Abbate PE, Dardanellib JL, Cantareroc MG, Maturanoc M, Melchiorid RJM, Sueroa EE (2004) Climatic and water availability effects on water-use efficiency in wheat. Crop Sci 44:474–483

    Google Scholar 

  • Abebe T, Guenzi AC, Martin B, Cushman JC (2003) Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol 131:1748–1755

    PubMed  CAS  Google Scholar 

  • Abrecht DG, Carberry PS (1993) The influence of water deficit prior to tassel initiation on maize growth, development and yield. Field Crops Res 31:55–69

    Google Scholar 

  • Abreu ME, Munne-Bosch S (2008) Salicylic acid may be involved in the regulation of drought-induced leaf senescence in perennials: a case study in field-grown Salvia officinalis L. plants. Environ Exp Bot 64:105–112

    CAS  Google Scholar 

  • Agarwal PK, Agarwal P, Reddy MK, Sopory SK (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25:1263–1274

    PubMed  CAS  Google Scholar 

  • Agboma P, Jones MGK, Peltonen-Sainio P, Rita H, Pehu E (1997) Exogenous glycinebetaine enhances grain yield of maize, sorghum and wheat grown under two watering regimes. J Agron Crop Sci 178:29–37

    CAS  Google Scholar 

  • Akram M (2011) Growth and yield components of wheat under water stress of different growth stages. Bangladesh J Agric Res 36:455–468

    Google Scholar 

  • Alcázar R, Planas J, Saxena T, Zarza X, Bortolotti C, Cuevas J, Bitrián M, Tiburcio AF, Altabella T (2010) Putrescine accumulation confers drought tolerance in transgenic Arabidopsis plants over expressing the homologous Arginine decarboxylase2 gene. Plant Physiol Biochem 48:547–552

    PubMed  Google Scholar 

  • Allahmoradi P, Ghobadi M, Taherabadi S, Taherabadi S (2011) Physiological aspects of mungbean (Vigna radiata L.) in response to drought stress. In: International conference on food engineering and biotechnology, pp 272–275

    Google Scholar 

  • Anjum SA, Wang LC, Farooq M, Hussain M, Xue LL, Zou CM (2011) Brassinolide application improves the drought tolerance in maize through modulation of enzymatic antioxidants and leaf gas exchange. J Agron Crop Sci 197:177–185

    CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    PubMed  CAS  Google Scholar 

  • Ashraf M (2010) Inducing drought tolerance in plants: recent advances. Biotechnol Adv 28:169–183

    PubMed  CAS  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycinebetaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216

    CAS  Google Scholar 

  • Ashraf M, Iram A (2005) Drought stress induced changes in some organic substances in nodules and other plant parts of two potential legumes differing in salt tolerance. Flora 200:535–546

    Google Scholar 

  • Asrar A-WA, Elhindi KM (2011) Alleviation of drought stress of marigold (Tagetes erecta) plants by using arbuscular mycorrhizal fungi. S J Biol Sci 18:93–98

    Google Scholar 

  • Atlin GN, Lafitte HR (2002) Marker-assisted breeding versus direct selection for drought tolerance in rice. In: Saxena NP, O’Toole JC (eds.) Field screening for drought tolerance in crop plants with emphasis on rice. In: Internationak workshop on field screening for drought tolerance in Rice, Patancheru, India, 11–14 Dec 2000, ICRISAT, Patancheru, India, and The Rockefeller Foundation, New York, p 208

    Google Scholar 

  • Babu RC, Nguyen BD, Chamarerk VP, Shanmugasundaram P, Chezhian P, Jeyaprakash SK, Ganesh A, Palchamy S, Sadasivam S, Sarkarung S, Wade LJ, Nguyen HT (2003) Genetic analysis of drought resistance in rice by molecular markers. Crop Sci 43:1457–1469

    CAS  Google Scholar 

  • Babu RC, Zhang J, Blum A, Ho THD, Wu R, Nguyen HT (2004) HVA1, a LEA gene from barley confers dehydration tolerance in transgenic rice (Oryza sativa L.) via cell membrane protection. Plant Sci 166:855–862

    CAS  Google Scholar 

  • Bae H, Kim S-H, Kim MS, Sicher RC, Lary D, Strem MD, Natarajan S, Bailey BA (2008) The drought response of Theobroma cacao (cacao) and the regulation of genes involved in polyamine biosynthesis by drought and other stresses. Plant Physiol Biochem 46:174–188

    PubMed  CAS  Google Scholar 

  • Bae H, Kim SK, Cho SK, Kang BG, Kima WT (2011) Overexpression of OsRDCP1, a rice RING domain-containing E3 ubiquitin ligase, increased tolerance to drought stress in rice (Oryza sativa L.). Plant Sci 180:775–782

    PubMed  CAS  Google Scholar 

  • Bahieldin A, Hesham HT, Eissa HF, Saleh OM, Ramadan AM, Ahmed IA, Dyer WE, El-Itriby HA, Madkour MA (2005) Field evaluation of transgenic wheat plants stably expressing the HVA1 gene for drought tolerance. Physiol Plant 123:421–427

    CAS  Google Scholar 

  • Bajguz A, Hayat S (2009) Effects of brassinosteroids on the plant responses to environmental stresses. Plant Physiol Biochem 47:1–8

    PubMed  CAS  Google Scholar 

  • Baligar VC, Fageria NK, He ZL (2001) Nutrient use efficiency in plants. Commun Soil Sci Plant Anal 32:921–950

    CAS  Google Scholar 

  • Bano A, Hansen H, Dorffling K, Hahn H (1994) Changes in the contents of free and conjugated abscisic acid, phaseic acid and cytokinins in xylem sap of drought stressed sunflower plants. Phytochem 37:345–347

    CAS  Google Scholar 

  • Bao-Yuan Z, Zai-Song D, Ming Z (2011) Alleviation of drought stress inhibition on photosynthesis by overexpression of PEPC in rice. Acta Agron Sin 37:112–118

    Google Scholar 

  • Barlow EWK (1988) The growth and functioning of leaves. Cambridge University Press, London, pp 314–345

    Google Scholar 

  • Biao-lin H, Xue-qin F, Tao Z, Yong W, Xia L, Yun-hong H, Liang-fang D, Xiang-dong L, Jian-kun X (2011) Genetic analysis on characteristics to measure drought resistance using dongxiang wild rice (Oryza rufupogon Griff.) and its derived backcross inbred lines population at seedling stage. Agric Sci China 10:1653–1664

    Google Scholar 

  • Blum A (2005) Drought resistance, water-use efficiency, and yield potential—are they compatible, dissonant, or mutually exclusive? Aust J Agric Res 56:1159–1168

    Google Scholar 

  • Broin M, Cuine S, Peltier G, Rey P (2000) Involvement of CDSP 32, a drought-induced thioredoxin, in the response to oxidative stress in potato plants. FEBS Lett 467:245–248

    PubMed  CAS  Google Scholar 

  • Browne J, Tunnacliffe A, Burnell A (2002) Anhydrobiosis-plant desiccation gene found in a nematode. Nat 416:38

    CAS  Google Scholar 

  • Cakmak I, Strbac D, Marschner H (1993) Activities of hydrogen peroxide-scavenging enzymes in germinating wheat seeds. J Exp Bot 44:127–132

    CAS  Google Scholar 

  • Cechin I, Rossi SC, Oliveira VC, Fumis TF (2006) Photosynthetic responses and proline content of mature and young leaves of sunflower plants under water deficit. Photosynthetica 44:143–146

    CAS  Google Scholar 

  • Chimenti CA, Marcantonio M, Hall AJ (2006) Divergent selection for osmotic adjustment results in improved drought tolerance in maize (Zea mays L.) in both early growth and flowering phases. Field Crops Res 95:305–315

    Google Scholar 

  • Chimenti CA, Pearson J, Hall AJ (2002) Osmotic adjustment and yield maintenance under drought in sunflower. Field Crops Res 75:235–246

    Google Scholar 

  • Correia MJ, Osorio ML, Osorio J, Barrote I, Martins M, David MM (2006) Influence of transient shade periods on the effects of drought on photosynthesis, carbohydrate accumulation and lipid peroxidation in sunflower leaves. J Environ Exp Bot 58:75–84

    CAS  Google Scholar 

  • Costa LD, Vedove GD, Gianquinto G, Giovanardi R, Peressotti A (1997) Yield, water use efficiency and nitrogen uptake in potato: influence of drought stress. Potato Res 40:19–34

    Google Scholar 

  • Davies W, Zhang J (1991) Root signals and the regulation of growth and the development of plants in drying soil. Annu Rev Plant Physiol Plant Mol Biol 42:55–76

    CAS  Google Scholar 

  • de Campos MKF, de Carvalho K, de Souza FS, Marur CJ, Pereira LFP, Filho JCB, Vieira LGE (2011) Drought tolerance and antioxidant enzymatic activity in transgenic ‘Swingle’citrumelo plants over-accumulating proline. Environ Exp Bot 72:242–250

    Google Scholar 

  • Desclaux D, Roumet P (1996) Impact of drought stress on the phenology of two soybean (Glycine max L. Merr) cultivars. Field Crops Res 46:61–70

    Google Scholar 

  • Dhanda SS, Sethi GS (2002) Tolerance to drought stress among selected Indian wheat cultivars. J Agric Sci 139:319–326

    Google Scholar 

  • Edmeades GO, Cooper M, Lafitte R, Zinselmeier C, Ribaut JM, Habben JE, Löffler C, Bänziger M (2001) Abiotic stresses and staple crops. In: Proceedings of the third international crop science congress, 18–23 Aug

    Google Scholar 

  • Farooq M, Basra SMA, Wahid A, Ahmad N, Saleem BA (2009a) Improving the drought tolerance in rice (Oryza sativa L.) by exogenous application of salicylic acid. J Agron Crop Sci 195:237–246

    CAS  Google Scholar 

  • Farooq M, Basra SMA, Wahid A, Cheema ZA, Cheema MA, Khaliq A (2008) Physiological role of exogenously applied glycinebetaine in improving drought tolerance of fine grain aromatic rice (Oryza sativa L.). J Agron Crop Sci 194:325–333

    CAS  Google Scholar 

  • Farooq M, Bramley H, Palta JA, Siddique KHM (2011) Heat stress in wheat during reproductive and grain filling phases. Crit Rev Plant Sci 30:491–507

    Google Scholar 

  • Farooq M, Kobayashi N, Ito O, Wahid A, Serraj R (2010a) Broader leaves result in better performance of indica rice under drought stress. J Plant Physiol 167:1066–1075

    PubMed  CAS  Google Scholar 

  • Farooq M, Wahid A, Cheema SA, Lee DJ, Aziz T (2010b) Comparative time course action of the foliar applied glycinebetaine, salicylic acid, nitrous oxide, brassinosteroids and spermine in improving drought resistance of rice. J Agron Crop Sci 196:336–345

    CAS  Google Scholar 

  • Farooq M, Wahid A, Ito O, Lee DJ, Siddique KHM (2009b) Advances in drought resistance of rice. Crit Rev Plant Sci 28:199–217

    CAS  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA (2009c) Plant drought stress: effects, mechanisms and management. Agron Sustain Devel 29:185–212

    Google Scholar 

  • Farooq M, Wahid A, Lee D-J (2009d) Exogenously applied polyamines increase drought tolerance of rice by improving leaf water status, photosynthesis and membrane properties. Acta Physiol Plant 31:937–945

    CAS  Google Scholar 

  • Figueiredo MVB, Buritya AH, Martınez CR, Chanway CP (2008) Alleviation of drought stress in the common bean (Phaseolus vulgaris L.) by co-inoculation with Paenibacillus polymyxa and Rhizobium tropici. App Soil Ecol 40:182–188

    Google Scholar 

  • Flexas J, Bota J, Loreto F, Comic G, Sharkey TD (2004) Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biol 6:269–279

    PubMed  CAS  Google Scholar 

  • Flexas J, Medrano H (2002) Energy dissipation in C3 plants under drought. Funct Plant Biol 29:1209–1215

    CAS  Google Scholar 

  • Fournier JM, Roldan AM, Sanchez C, Alexandre G, Benlloch M (2005) K+ starvation increases water uptake in whole sunflower plants. Plant Sci 168:823–829

    CAS  Google Scholar 

  • Foyer CH, Fletcher JM (2001) Plant antioxidants: colour me healthy. Biologist 48:115–120

    PubMed  CAS  Google Scholar 

  • Fukai S (1999) Phenology in rainfed lowland rice. Field Crops Res 64:51–60

    Google Scholar 

  • Fukai S, Cooper M (1995) Development of drought-resistant cultivars using physio-morphological traits in rice. Field Crops Res 40:67–86

    Google Scholar 

  • Geerts S, Raes D, Garcia M, Mendoza J, Huanca R (2008) Crop water use indicators to quantify the flexible phenology of quinoa (Chenopodium quinoa Willd.) in response to drought stress. Field Crops Res 108:150–156

    Google Scholar 

  • Ghannoum O (2009) C4 photosynthesis and water stress. Ann Bot 103:635–644

    PubMed  CAS  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48:909–930

    PubMed  CAS  Google Scholar 

  • Gomes FP, Oliva MA, Mielke MS, Almeida A-AF, Aquino LA (2010) Osmotic adjustment, proline accumulation and cell membrane stability in leaves of Cocos nucifera submitted to drought stress. Sci Hort 126:379–384

    CAS  Google Scholar 

  • Gomes FP, Oliva MA, Mielke MS, Almeida A-AF, Leite HG, Aquino LA (2008) Photosynthetic limitations in leaves of young Brazilian green dwarf coconut (Cocos nucifera L. ‘nana’) palm under well-watered conditions or recovering from drought stress. Environ Exp Bot 62:195–204

    CAS  Google Scholar 

  • Gong D-S, Xiong Y-C, Ma B-L, Wang T-M, Ge J-P, Qin X-L, Li P-F, Kong H-Y, Li Z-Z, Li F-M (2010) Early activation of plasma membrane H+-ATPase and its relation to drought adaptation in two contrasting oat (Avena sativa L.) genotypes. Environ Exp Bot 69:1–8

    CAS  Google Scholar 

  • Gosal SS, Wani SH, Kang MS (2009) Biotechnology and drought tolerance. J Crop Imp 23:19–54

    CAS  Google Scholar 

  • Gowda VRP, Henry A, Yamauchi A, Shashidhar HE, Serraj R (2011) Root biology and genetic improvement for drought avoidance in rice. Field Crops Res 122:1–13

    Google Scholar 

  • Guan-fu F, Jian S, Jie X, Yu-rong L, Hui-zhe C, Ming-kai L, Long-xing T (2011) Changes of oxidative stress and soluble sugar in anthers involve in rice pollen abortion under drought stress. Agric Sci China 10:1016–1025

    Google Scholar 

  • Gunes A, Kadioglu YK, Pilbeam DJ, Inal A, Coban S, Aksu A (2008) Influence of silicon on sunflower cultivars under drought stress, II: essential and non essential element uptake determined by polarized energy dispersive X-ray fluorescence. Comm Soil Sci Plant Anal 39:1904–1927

    CAS  Google Scholar 

  • Gutierrez-Boem FH, Thomas GW (1999) Phosphorus nutrition and water deficits in field grown soybeans. Plant Soil 207:87–96

    Google Scholar 

  • Hadiarto T, Tran L-SP (2011) Progress studies of drought-responsive genes in rice. Plant Cell Rep 30:297–310

    PubMed  CAS  Google Scholar 

  • Hattori T, Inanaha S, Araki H, An P, Morita S, Luxova M, Lux A (2005) Application of silicon enhanced tolerance in Sorghum bicolor. Physiol Plant 123:459–466

    CAS  Google Scholar 

  • He C, Zhang CW, Gao Q, Yang A, Hu X, Zhang J (2011) Enhancement of drought resistance and biomass by increasing the amount of glycine betaine in wheat seedlings. Euphytica 177:16–151

    Google Scholar 

  • Holmström K-O, Mäntylä E, Welin B, Mandal A, Palva ET, Tunnela O, Londesborough J (1996) Drought tolerance in tobacco. Nature 379:683–684

    Google Scholar 

  • Hu TZ (2008) OsLEA3, a late embryogenesis abundant protein gene from rice, confers tolerance to water deficit and salt stress to transgenic rice. Russ J Plant Physiol 55:530–537

    CAS  Google Scholar 

  • Huang J, Hirji R, Adam L, Rozwadowski KL, Hammerlindl JK, Keller WA, Selvaraj G (2000) Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: metabolic limitations. Plant Physiol 122:747–756

    PubMed  CAS  Google Scholar 

  • Hussain M, Malik MA, Farooq M, Ashraf MY, Cheema MA (2008) Improving drought tolerance by exogenous application of glycinebetaine and salicylic acid in sunflower. J Agron Crop Sci 194:193–199

    CAS  Google Scholar 

  • Hussain M, Malik MA, Farooq M, Khan MB, Akram M, Saleem MF (2009) Exogenous glycinebetaine and salicylic acid application improves water relations, allometry and quality of hybrid sunflower under water deficit conditions. J Agron Crop Sci 195:98–109

    CAS  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis, vol 1009. Cambridge University Press, Cambridge

    Google Scholar 

  • Iqbal N, Ashraf M, Ashraf MY (2009) Influence of exogenous glycine betaine on gas exchange and biomass production in sunflower (Helianthus annuus L.) under water limited conditions. J Agron Crop Sci 195:420–426

    CAS  Google Scholar 

  • Iqbal N, Ashraf M, Ashraf MY, Azam F (2005) Effect of exogenous application of glycinebetaine on capitulum size and achene number of sunflower under water stress. Int J Biol Biotech 2:765–771

    CAS  Google Scholar 

  • Jalil CA, Gopi R, Sankar B, Manivannan P, Kishorkumar A, Sridharan R (2007) Studies on germination, seedling vigor, lipid peroxidation and proline metabolism in Catharanthus roseus seedlings under salt stress. South Afr J Bot 73:190–195

    Google Scholar 

  • Jongrungklang N, Toomsan B, Vorasoot N, Jogloy S, Boote KJ, Hoogenboom G, Patanothai A (2011) Rooting traits of peanut genotypes with different yield responses to pre-flowering drought stress. Field Crops Res 120:262–270

    Google Scholar 

  • Kavar T, Maras M, Kidric M, Sustar-Vozlic J, Meglic V (2007) Identification of genes involved in the response of leaves of Phaseolus vulgaris to drought stress. Mol Breed 21:159–172

    Google Scholar 

  • Kavi Kishor PB, Hong Z, Miao GH, Hu CAA, Verma DPS (1995) Over-expression of d-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 25:1387–1394

    Google Scholar 

  • Ke Y, Han G, He H, Li J (2009) Differential regulation of proteins and phosphoproteins in rice under drought stress. Biochem Biophy Res Commun 379:133–138

    CAS  Google Scholar 

  • Kiani SP, Talia P, Maury P, Grieu P, Heinz R, Perrault A, Nishinakamasu V, Hopp E, Gentzbittel L, Paniego N, Sarrafi A (2007) Genetic analysis of plant water status and osmotic adjustment in recombinant inbred lines of sunflower under two water treatments. Plant Sci 172:773–787

    CAS  Google Scholar 

  • Kiliç H, Yağbasanlar T (2010) The effect of drought stress on grain yield, yield components and some quality traits of durum wheat (Triticum turgidum ssp. durum) cultivars. Not Bot Hort Agrobot Cluj 38:164–170

    Google Scholar 

  • Kirigwi FM, Ginkel MV, Brown-Guedira G, Gill BS, Paulsen GM, Fritz AK (2007) Markers associated with a QTL for grain yield in wheat under drought. Mol Breed 20:401–413

    CAS  Google Scholar 

  • Kirkham MB (2005) Principles of soil and plant water relations. Elsevier, The Netherlands

    Google Scholar 

  • Kramer PJ, Boyer JS (1995) Water relations of plants and soils. Academic, San Diego

    Google Scholar 

  • Kubis J (2003) Polyamines and “scavenging system”: influence of exogenous spermidine on catalase and guaiacol peroxidase activities, and free polyamine level in barley leaves under water deficit. Acta Physiol Plant 25:337–343

    CAS  Google Scholar 

  • Kumar J, Abbo S (2001) Genetics of flowering time in chickpea and its bearing on productivity in semiarid environments. Adv Agron 72:107–138

    CAS  Google Scholar 

  • Kumar R, Sarawgi AK, Ramos C, Amarante ST, Ismail AM, Wade LJ (2006) Partitioning of dry matter during drought stress in rainfed lowland rice. Field Crops Res 98:1–11

    Google Scholar 

  • Kumar R, Venuprasad R, Atlin GN (2007) Genetic analysis of rainfed lowland rice drought tolerance under naturally-occurring stress in eastern India: heritability and QTL effects. Field Crops Res 103:42–52

    Google Scholar 

  • Kumar A, Bernier J, Verulkar S, Lafitte HR, Atlin GN (2008) Breeding for drought tolerance: direct selection for yield, response to selection and use of drought-tolerant donors in upland and lowland-adapted populations. Field Crops Res 107:221–231

    Google Scholar 

  • Lafitte HR, Yongsheng G, Yan S, Li ZK (2007) Whole plant responses, key processes, and adaptation to drought stress: the case of rice. J Exp Bot 58:169–175

    PubMed  CAS  Google Scholar 

  • Lambers H, Chapin FS, Pons TL (2008) Plant physiological ecology, 2nd edn. Springer, New York

    Google Scholar 

  • Lanceras J, Pantuwan G, Jongdee B, Toojinda T (2004) Quantitative trait loci associated with drought tolerance at reproductive stage in rice. Plant Physiol 135:384–399

    PubMed  CAS  Google Scholar 

  • Laporte MM, Shen B, Tarczynski MC (2002) Engineering for drought avoidance: expression of maize NADP-malic enzyme in tobacco results in altered stomatal function. J Exp Bot 369:699–705

    Google Scholar 

  • Lawlor DW, Cornic G (2002) Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell Environ 25:275–294

    CAS  Google Scholar 

  • Lei YB, Yin CY, Li CY (2006) Differences in some morphological, physiological and biochemical responses to drought stress in two contrasting populations of Populus przewalskii. Physiol Plant 127:182–191

    CAS  Google Scholar 

  • Levitt J (1980) Responses of plants to environmental stresses. In: Kozlowski TT (ed) Water, radiation, salt and other stresses, vol 2, 2nd edn. Academic, New York, pp 93–186

    Google Scholar 

  • Li Y (2008) Kinetics of the antioxidant response to salinity in the halophyte Limonium bicolor. Plant Soil Environ 54:493–497

    CAS  Google Scholar 

  • Li YP, Ye W, Wang M, Yan XD (2009) Climate change and drought: a risk assessment of crop-yield impacts. Climate Res 39:31–46

    CAS  Google Scholar 

  • Liu F, Andersen MN, Jensen CR (2003) Loss of pod set caused by drought stress is associated with water status and ABA content of reproductive structures in soybean. Funct Plant Biol 30:271–280

    CAS  Google Scholar 

  • Liu F, Jensen CR, Andersen MN (2004) Drought stress effect on carbohydrate concentration in soybean leaves and pods during early reproductive development: its implication in altering pod set. Field Crops Res 86:1–13

    CAS  Google Scholar 

  • Liu H, Wang X, Wang D, Zou Z, Liang Z (2011) Effect of drought stress on growth and accumulation of active constituents in Salvia miltiorrhiza Bunge. Ind Crops Prod 33:84–88

    CAS  Google Scholar 

  • Liu HP, Yu BJ, Zhang WH, Liu YL (2005) Effect of osmotic stress on the activity of H+-ATPase and the levels of covalently and noncovalently conjugated polyamines in plasma membrane preparation from wheat seedling roots. Plant Sci 168:1599–1607

    CAS  Google Scholar 

  • Liu YP, Zhang JH, Liu HT, Huang WD (2008) Salicylic acid or heat acclimation pre-treatment enhances the plasma membrane-associated ATPase activities in young grape plants. Sci Hort 119:21–27

    CAS  Google Scholar 

  • Lv S, Yang A, Zhang K, Wang L, Zhang J (2007) Increase of glycinebetaine synthesis improves drought tolerance in cotton. Mol Breed 20:233–248

    CAS  Google Scholar 

  • Ma QQ, Wei W, Yong-hua L, De-Quan L, Zoa Q (2006) Alleviation of photoinhibition in drought-stressed wheat (Triticum aestivum) by foliar- applied glycinebetaine. J Plant Physiol 163:65–175

    Google Scholar 

  • Ma R, Zhang M, Li B, Du G, Wang J, Chen J (2005) The effects of exogenous Ca2+ on endogenous polyamine levels and drought-resistant traits of spring wheat grown under arid conditions. J Arid Environ 63:177–190

    Google Scholar 

  • Mahdieh M, Mostajeran A (2009) Abscisic acid regulates root hydraulic conductance via aquaporin expression modulation in Nicotiana tabacum. J Plant Physiol 166:1993–2003

    PubMed  CAS  Google Scholar 

  • Majid SA, Asghar R, Murtaza G (2007) Yield stability analysis conferring adaptation of wheat to pre- and post-anthesis drought conditions. Pak J Bot 39:1623–1637

    Google Scholar 

  • Makela P, Jokinen K, Kontturi M, Peltonen-Sainio P, Pehu E, Somersalo S (1998) Foliar application of glycinebetaine—a novel product from sugar beet—as an approach to increase tomato yield. Indust Crops Prod 7:139–148

    CAS  Google Scholar 

  • Manivannan P, Jaleel CA, Kishorekumar A, Sankar B, Somasundaram R, Sridharan R, Panneerselvam R (2007) Drought stress induced changes in the biochemical parameters and photosynthetic pigments of cotton (Gossypium hirsutum L.). Indian J Appl Pure Biol 22:369–372

    CAS  Google Scholar 

  • Manivannan P, Jaleel CA, Somasundaram R, Panneerselvam R (2008) Osmoregulation and antioxidant metabolism in drought-stressed Helianthus annuus under triadimefon drenching. C R Biologies 331:418–425

    PubMed  CAS  Google Scholar 

  • Mascher R, Nagy E, Lippmann B, Hornlein S, Fischer S, Scheiding W, Neagoe A, Bergmann H (2005) Improvement of tolerance to paraquat and drought in barley (Hordeum vulgare L.) by exogenous 2-aminoethanol: effects on superoxide dismutase activity and chloroplast ultrastructure. Plant Sci 168:691–698

    CAS  Google Scholar 

  • Matsui T, Singh BB (2003) Root characteristics in cowpea related to drought tolerance at the seedling stage. Exp Agric 39:29–38

    Google Scholar 

  • McMaster GS, Wilhelm WW (2003) Phenological responses of wheat and barley to water and temperature: improving simulation models. J Agric Sci 141:129–147

    Google Scholar 

  • McWilliams D (2003) Drought strategies for cotton, cooperative extension service circular 582. College of Agriculture and Home Economics, New Mexico State University, USA

    Google Scholar 

  • Medrano H, Escalona JM, Bota J, Gulías J, Flexas J (2002) Regulation of photosynthesis of C3 plants in response to progressive drought: stomatal conductance as a reference parameter. Ann Bot 89:895–905

    PubMed  CAS  Google Scholar 

  • Meyre D, Leonardi A, Brisson G, Vartanian N (2001) Drought-adaptive mechanisms involved in the escape/tolerance strategies of Arabidopsis Landsberg erecta and Columbia ecotypes and their F1 reciprocal progeny. J Plant Physiol 158:1145–1152

    CAS  Google Scholar 

  • Mishra V, Cherkauer KA (2010) Retrospective droughts in the crop growing season: implications to corn and soybean yield in the Midwestern United States. Agric Forest Met 150:1030–1045

    Google Scholar 

  • Miyashita K, Tanakamaru S, Maitani T, Kimura K (2005) Recovery responses of photosynthesis, transpiration, and stomatal conductance in kidney bean following drought stress. Environ Exp Bot 53:205–214

    CAS  Google Scholar 

  • Noctor G, Arisi A-CM, Jouanin L, Foyer CH (1999) Photorespiratory glycine enhances glutathione accumulation in both the chloroplastic and cytosolic compartments. J Exp Bot 50:157–1167

    Google Scholar 

  • Noctor G, Veljovic-Javanovic S, Driscoll S, Novitskaya L, Foyer CH (2002) Drought and oxidative load in the leaves of C3 plants: a predominant role for photorespiration. Ann Bot 89:841–850

    PubMed  CAS  Google Scholar 

  • Nooden LD (1988) The phenomena of senescence and aging. In: Nooden LD, Leopald AC (eds) Senescence and aging in plants. Academic, USA, pp 1–50

    Google Scholar 

  • Okcu G, Kaya MD, Atak M (2005) Effects of salt and drought stresses on germination and seedling growth of pea (Pisum sativum L.). Turk J Agric For 29:237–242

    Google Scholar 

  • Ouvrard O, Cellier F, Ferrare K, Tousch D, Lamaze T, Dupuis JM, Casse-Delbart F (1996) Identification and expression of water stress and abscisic acid -regulated genes in a drought-tolerant sunflower genotype. Plant Mol Bio 31:819–829

    CAS  Google Scholar 

  • Ozkur O, Ozdemir F, Bor M, Turkan I (2009) Physiochemical and antioxidant responses of the perennial xerophyte Capparis ovata Desf. to drought. Environ Exp Bot 66:487–492

    CAS  Google Scholar 

  • Perez-Perez JG, Robles JM, Tovar JC, Botia P (2009) Response to drought and salt stress of lemon ‘Fino 49’ under field conditions: Water relations, osmotic adjustment and gas exchange. Sci Hort 122:83–90

    Google Scholar 

  • Piro G, Leucci MR, Waldron K, Dalessandro G (2003) Exposure to water stress causes changes in the biosynthesis of cell wall polysaccharides in roots of wheat cultivars varying in drought tolerance. Plant Sci 165:559–569

    CAS  Google Scholar 

  • Pompelli MF, Barata-Luıs R, Vitorino HS, Goncalves ER, Rolim EV, Santos MG, Almeida-Cortez JS, Lemos EE, Ferreira VM, Endres L (2010) Photosynthesis, photoprotection and antioxidant activity of purging nut under drought deficit and recovery. Biomass Bioenergy 34:1207–1215

    CAS  Google Scholar 

  • Qiu Z-B, Liu X, Tian X-J, Yue M (2008) Effects of CO2 laser pretreatment on drought stress resistance in wheat. J Photochem Photobiol B: Bio 90:17–25

    CAS  Google Scholar 

  • Rauf S (2008) Breeding sunflower (Helianthus annuus L.) for drought tolerance. Commun Biomet Crop Sci 3:29–44

    Google Scholar 

  • Reddy AR, Chaitanya KV, Vivekanandan M (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J Plant Physiol 161:1189–1202

    CAS  Google Scholar 

  • Reddy GKM, Dangi KS, Kumar SS, Reddy AV (2003) Effect of moisture stress on seed yield and quality in sunflower (Helianthus annuus L.). J Oilseeds Res 20:282–283

    Google Scholar 

  • Rivero RM, Kojima M, Gepstein A, Sakakibara H, Mittler R, Gepstein S, Blumwald E (2007) Delayed leaf senescence induces extreme drought tolerance in a flowering plant. Proc Natl Acad Sci USA 104:19631–19636

    PubMed  CAS  Google Scholar 

  • Romero C, Belles JM, Vaya JL, Serrano R, Culianez-Macia FA (1997) Expression of the yeast trehalose-6-phosphate synthase gene transgenic tobacco plants: pleiotropic phenotypes include droughttolerance. Planta 201:293–297

    PubMed  CAS  Google Scholar 

  • Rout NP, Shaw BP (2001) Salt tolerance in aquatic macrophytes: possible involvement of the antioxidative enzymes. Plant Sci 160:415–423

    PubMed  CAS  Google Scholar 

  • Salekdeh GH, Siopongco J, Wade LJ, Ghareyazie B, Bennett J (2002) Proteomic analysis of rice leaves during drought stress and recovery. Proteomics 2:1131–1145

    PubMed  CAS  Google Scholar 

  • Sankar B, Jaleel CA, Manivannan P, Kishorekumar A, Somasundram R, Panneerselvam R (2007) Drought-induced biochemical modifications and proline metabolism in Abelmoschus esculentus (L.) Moench. Acta Bot Croat 66:43–56

    CAS  Google Scholar 

  • Scandalios JG (2005) Oxidative stress: molecular perception and transduction of signals triggering antioxidant gene defenses. Braz J Med Biol Res 38:995–1014

    PubMed  CAS  Google Scholar 

  • Schussler JR, Westgate ME (1995) Assimilate flux determines kernel set at low water potential in maize. Crop Sci 35:1196–1203

    Google Scholar 

  • Seki M, Kameiy A, Yamaguchi-Shinozaki K, Shinozaki K (2003) Molecular responses to drought, salinity and frost: common and different paths for plant protection. Curr Opin Biotechn 14:194–199

    CAS  Google Scholar 

  • Senaratna T, Touchell D, Bunn E, Dixon K (2000) Acetyl salicylic acid (aspirin) and salicylic acid induce multiple stress tolerance in bean and tomato plants. Plant Growth Reg 30:157–161

    CAS  Google Scholar 

  • Serraj R, Sinclair TR (2002) Osmolyte accumulation: can it really help increase crop yield under drought conditions? Plant, Cell Environ 25:333–341

    Google Scholar 

  • Shen X, Zhou Y, Duan L, Li Z, Eneji AE, Li J (2010) Silicon effects on photosynthesis and antioxidant parameters of soybean seedlings under drought and ultraviolet-B radiation. J Plant Physiol 167:1248–1252

    PubMed  CAS  Google Scholar 

  • Shou H, Bordallo P, Wang K (2004) Expression of the Nicotiana protein kinase (NPK1) enhanced drought tolerance in transgenic maize. J Exper Bot 55:1013–1019

    CAS  Google Scholar 

  • Siddique KHM, Regan KL, Tennant D, Thomson BD (2001) Water use and water use efficiency of cool season grain legumes in low rainfall Mediterranean-type environments. Eur J Agron 15:267–280

    Google Scholar 

  • Signarbieux C, Feller U (2011) Non-stomatal limitations of photosynthesis in grassland species under artificial drought in the field. Environ Exp Bot 71:192–197

    CAS  Google Scholar 

  • Simova-Stoilova L, Demirevska K, Petrova T, Tsenov N, Feller U (2008) Antioxidative protection in wheat varieties under severe recoverable drought at seedling stage. Plant Soil Environ 54:529–536

    CAS  Google Scholar 

  • Sinclair TR, Muchow RC (2001) System analysis of plant traits to increase grain yield on limited water supplies. Agron J 93:263–270

    Google Scholar 

  • Singh B, Singh G (2004) Influence of soil water regime on nutrient mobility and uptake by Dalbergia sissoo seedlings. Trop Ecol 45:337–340

    Google Scholar 

  • Singh B, Usha K (2003) Salicylic acid induced physiological and biochemical changes in wheat seedlings under water stress. Plant Growth Reg 39:137–141

    CAS  Google Scholar 

  • Sivamani E, Bahieldin A, Wraith JM, Al-Niemi T, Dyer WE, Ho THD, Qu R (2000) Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci 155:1–9

    PubMed  CAS  Google Scholar 

  • Subramanian KS, Santhanakrishnan P, Balasubramanian P (2006) Responses of field grown tomato plants to arbuscular mycorrhizal fungal colonization under varying intensities of drought stress. Sci Hort 107:245–253

    Google Scholar 

  • Taiz L, Zeiger E (2010) Plant Physiology, 5th edn. Sinauer Associates Inc. Publishers, Massachusetts

    Google Scholar 

  • Tausz M, Wonisch A, Peters J, Jimenez MS, Morales D, Grill D (2001) Short-term changes in free-radical scavengers and chloroplast pigments in Pinus canariensis needles as affected by mild drought stress. J Plant Physiol 158:213–219

    CAS  Google Scholar 

  • Tezara W, Mitchell VJ, Driscoll SD, Lawlor DW (1999) Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature 401:914–917

    CAS  Google Scholar 

  • Tezara W, Mitchell VJ, Driscoll SD, Lawlor DW (2002) Effects of water deficit and its interaction with CO2 supply on the biochemistry and physiology of photosynthesis in sunflower. J Exp Bot 53:1781–1791

    PubMed  CAS  Google Scholar 

  • Turner NC, Wright GC, Siddique KHM (2001) Adaptation of grain legumes (pulses) to water-limited environments. Adv Agron 71:193–271

    Google Scholar 

  • Tyerman SD, Niemietz CM, Brameley H (2002) Plant aquaporins: multifunctional water and solute channels with expanding roles. Plant, Cell Environ 25:173–194

    CAS  Google Scholar 

  • Venuprasad R, Lafitte HR, Atlin GN (2007) Response to direct selection for grain yield under drought stress in rice. Crop Sci 47:285–293

    Google Scholar 

  • Vijay KL (2004) Irrigation strategies for crop production under water scarcity. International Commission on Irrigation and Drainage New Delhi 110–021:89–109

    Google Scholar 

  • Waditee R, Bhuiyan MN, Rai V, Aoki K, Tanaka Y, Hibino T, Suzuki S, Takano J, Jagendorf AT, Takabe T et al (2005) Genes for direct methylation of glycine provide high levels of glycinebetaine and abiotic-stress tolerance in Synechococcus and Arabidopsis. Proc Natl Acad Sci USA 102:1318–1323

    PubMed  CAS  Google Scholar 

  • Walter J, Nagy L, Hein R, Rascher U, Beierkuhnlein C, Willner E, Jentsch A (2011) Do plants remember drought? Hints towards a drought-memory in grasses. Environ Exp Bot 71:34–40

    Google Scholar 

  • Wang FZ, Wang Q-B, Kwon S-Y, Kwak S-S, Su W-A (2005a) Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. J Plant Physiol 162:465–472

    PubMed  CAS  Google Scholar 

  • Wang H, Yamauchi A (2006) Growth and functions of roots under abiotic stress in soil. In: Huang B (ed) Plant–environment interactions, 3rd edn. CRC Press, New York, pp 271–320

    Google Scholar 

  • Wang Y, Ying J, Kuzma M, Chalifoux M, Sample A, McArthur C, Uchacz T, Sarvas C, Wan J, Tennis DT, McCourt P, Huang Y (2005b) Molecular tailoring of farnesylation for plant drought tolerance and yield protection. Plant J 43:413–424

    PubMed  CAS  Google Scholar 

  • Wingler A, Lea PJ, Quick WP, Leegood RC (2000) Photorespiration: metabolic pathways and their role in stress protection. Philos Trans R Soc Lond B Biol Sci 355:1517–1529

    PubMed  CAS  Google Scholar 

  • Wu R, Garg A (2003) Engineering rice plants with trehalose-producing genes improves tolerance to drought, salt, and low temperature. ISB News Report

    Google Scholar 

  • Wyn Jones RG, Storey R, Leigh PA (1977) A hypothesis on cytoplasmic osmoregulation. In: Marre E, Ciferri O (eds) Regulation of cell membrane activities in higher plants. Elsevier, Amsterdam, pp 121–136

    Google Scholar 

  • Xing W, Rajashekar CB (1999) Alleviation of water stress in beans by exogenous glycinebetaine. Plant Sci 148:185–195

    CAS  Google Scholar 

  • Yadav RS, Hash CT, Bidinger FR, Devos KM, Howarth CJ (2004) Genomic regions associated with grain yield and aspects of post flowering drought tolerance in pearl millet across environments and tester background. Euphytica 136:265–277

    CAS  Google Scholar 

  • Yamaguchi K, Takahashi Y, Berberich T, Imai A, Takahashi T, Michael AJ, Kusano T (2007) A protective role for the polyamine spermine against drought stress in Arabidopsis. Biochem Biophys Res Commun 352:486–490

    PubMed  CAS  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    PubMed  CAS  Google Scholar 

  • Yamance K, Hayakawa K, Kawasaki M (2003) Bundle sheath chloroplasts of rice are more sensitive to drought stress than mesophyll chloroplasts. J Plant Physiol 160:1319–1327

    Google Scholar 

  • Yamauchi Y, Pardales JR, Kono Y (1996) Root system structure and its relation to stress tolerance. In: Ito O et al (eds) Roots and nitrogen in cropping systems of the semi-arid tropics. JIRCAS Publication, Tsukuba

    Google Scholar 

  • Yuan G-F, Jia C-G, Li Z, Sun B, Zhang L-P, Liu N, Wang Q-M (2010) Effect of brassinosteroids on drought resistance and abscisic acid concentration in tomato under water stress. Sci Hort 126:103–108

    CAS  Google Scholar 

  • Zhang J, Kirkham MB (1996) Enzymatic responses of the ascorbate-glutathione cycle to drought in sorghum and sunflower plants. Plant Sci 113:139–147

    CAS  Google Scholar 

  • Zhang Y, Yang X, Liu Q, Qiu D, Zhang Y, Zeng H, Yuan J, Mao J (2010) Purification of novel protein elicitor from Botrytis cinerea that induces disease resistance and drought tolerance in plants. Microbiol Res 165:142–151

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Farooq .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Farooq, M., Hussain, M., Wahid, A., Siddique, K.H.M. (2012). Drought Stress in Plants: An Overview. In: Aroca, R. (eds) Plant Responses to Drought Stress. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-32653-0_1

Download citation

Publish with us

Policies and ethics