Skip to main content
Log in

Drought tolerance depends on the age of the spring wheat seedlings and differentiates patterns of proteinases

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The majority of plant species lose their ability to tolerate severe water deficit after germination at the beginning of seedling growth, in the time of emergence of the radical from the seed. The experiment was designed to compare the differences in proteolytic response between 4-and 6-days old spring wheat (Triticum aestivum L.) seedlings of Eta cultivar, respectively tolerant and sensitive to severe drought inducing up to 90% water saturation deficit (WSD). In coleoptiles the changes of proteolytic activity had the same trend regardless on the seedlings age and increased about fourfold upon 85% WSD as compared to the control, from about 4 to 19 (U/mg protein h). The dehydration of roots of 4 day old seedlings resulted in sharp, fivefold activity increase at 85% WSD (from 11 to >50 U/mg protein h). In roots of 6 days old seedlings dehydrated to 55% WSD the proteolytic activity raised twofold and was about 2.5 times higher than in roots of 4 days old seedlings dehydrated to the same WSD. In coleoptiles of both the 4- and 6-days old seedlings subjected to drought appearance of new bands of serine proteinases was observed. Presented results indicate that roots are more sensitive to drought than coleoptiles, which brings an argument for breeders showing that programs involving roots phenotyping have a full biochemical rationale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

E-64:

trans-epoxysuccinyl-l-leucylamido-(4-guanidino) butane

HSP:

heat stress protein

LEA:

late-embryogenesis abundant protein

PMSF:

phenylmethanesulfonyl fluoride

WSD:

water saturation deficit

References

  1. Rybka, K. and Nita, Z., Physiological requirements for wheat ideotypes in response to drought threat, Acta Physiol. Plant., 2015, vol. 37, p. 97. doi 10.1007/s11738-015-1844-5

    Article  Google Scholar 

  2. Rawlings, N.D., Barrett, A.J., and Bateman, A., MEROPS, the database of proteolytic enzymes, their substrates and inhibitors, Nucleic Acids Res., 2012, vol. 40: D343–350

    Article  CAS  PubMed  Google Scholar 

  3. Zulet, A., Gil-Monreal, M., Villamor, J.G., Zabalza, A., van der Hoorn, R.A.L., and Royuela, M., Proteolytic pathways induced by herbicides that inhibit amino acid biosynthesis, PLoS One, 2013, vol. 8: e73847

    Google Scholar 

  4. Kidrič, M., Kos, J., and Sabotič, J., Proteases and their endogenous inhibitors in the plant response to abiotic stress, Bot. Serbica, 2014, vol. 38, pp. 139–158.

    Google Scholar 

  5. Hieng, B., Ugrinovič, K., Šuštar-Vozlič, J., and Kidrič, M., Different classes of proteases are involved in the response to drought of Phaseolus vulgaris L. cultivars differing in sensitivity, J. Plant Physiol., 2004, vol. 161, pp. 519–530.

    Article  CAS  PubMed  Google Scholar 

  6. Srivastava, A., Nair, J., Bendigeri, D., Vijaykumar, A., Ramaswamy, N., and D’Souza, S., Purification and characterization of a salinity-induced alkaline protease from isolated spinach chloroplasts, Acta Physiol. Plant., 2009, vol. 31, pp. 187–197.

    Article  CAS  Google Scholar 

  7. Demirevska, K., Zasheva, D., Dimitrov, R., Simova-Stoilova, L., Stamenova, M., and Feller, U., Drought stress effects on Rubisco in wheat, changes in the Rubisco large subunit, Acta Physiol. Plant., 2009, vol. 31, pp. 1129–1138.

    Article  CAS  Google Scholar 

  8. Grudkowska, M. and Zagdanska, B., Multifunctional role of plant cysteine proteinases, Acta Biochim. Pol., 2004, vol. 51, pp. 609–624.

    CAS  PubMed  Google Scholar 

  9. Chi, W., Sun, X., and Zhang, L., The roles of chloroplast proteases in the biogenesis and maintenance of photosystem II, Biochim. Biophys. Acta, Bioenerg., 2012, vol. 1817, pp. 239–246.

    Article  CAS  Google Scholar 

  10. Rossano, R., Larocca, M., and Riccio, P., 2-D zymographic analysis of Broccoli (Brassica oleracea, L. var. Italica) florets proteases, follow up of cysteine protease isotypes in the course of post-harvest senescence, J. Plant Physiol., 2011, vol. 168, no. 13, pp. 1517–1525.

    Article  CAS  PubMed  Google Scholar 

  11. Maciel, F., Salles, C.C., Retamal, C., Gomes, V., and Machado, O.T., Identification and partial characterization of two cysteine proteases from castor bean leaves Ricinus communis L. activated by wounding and methyl jasmonate stress, Acta Physiol. Plant., 2011, vol. 33, pp. 1867–1875.

    Article  CAS  Google Scholar 

  12. Zagdańska, B. and Wiśniewski, K., ATP-dependent proteolysis contributes to the acclimation-induced drought resistance in spring wheat, Acta Physiol. Plant., 1998, vol. 20, pp. 55–58.

    Article  Google Scholar 

  13. Misas-Villamil, J.C., Toenges, G., Kolodziejek, I., Sadaghiani, A.M., Kaschani, F., Colby, T., Bogyo, M., and van der Hoorn, R.A.L., Activity profiling of vacuolar processing enzymes reveals a role for VPE during oomycete infection, Plant J., 2013, vol. 73, pp. 689–700.

    Article  CAS  PubMed  Google Scholar 

  14. Grudkowska, M., Lisik, P., and Rybka, K., Twodimensional zymography in detection of proteolytic enzymes in wheat leaves, Acta Physiol. Plant., 2013, vol. 35, pp. 3477–3482.

    Article  CAS  Google Scholar 

  15. Mariano, G. and Funk, C., Matrix metalloproteinases in plants, a brief overview, Physiol. Plant., 2012, vol. 145, pp. 196–202.

    Article  Google Scholar 

  16. Lucinski, R. and Jackowski, G., AtFtsH heterocomplex-mediated degradation of apoproteins of the major light harvesting complex of photosystem II (LHCII) in response to stresses, J. Plant Physiol., 2013, vol. 170, pp. 1082–1089.

    Article  CAS  PubMed  Google Scholar 

  17. Farrant, J.M., Bailly, C., Leymarie, J., Hamman, B., Côme, D., and Corbineau, F., Wheat seedlings as a model to understand desiccation tolerance and sensitivity, Physiol. Plant., 2004, vol. 120, pp. 563–574.

    Article  CAS  PubMed  Google Scholar 

  18. Miazek, A. and Zagdańska, B., Involvement of exopeptidases in dehydration tolerance of spring wheat seedlings, Biol. Plant., 2008, vol. 52, pp. 687–694.

    Article  CAS  Google Scholar 

  19. Turner, N.C., Techniques and experimental approaches for the measurement of the plant water status, Plant Soil, 1981, vol. 58, pp. 339–366.

    Article  Google Scholar 

  20. Bradford, M.M., A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.

    Article  CAS  PubMed  Google Scholar 

  21. Laemmli, U., Cleavage of structural protein during the assembly of the head of bacteriophage T4, Nature, 1970, vol. 227, pp. 680–685.

    Article  CAS  PubMed  Google Scholar 

  22. Bogdan, J. and Zagdańska, B., Drought resistance of spring wheat during germination and seedling growth, Biul. IHAR, 2004, vol. 233, pp. 83–90.

    Google Scholar 

  23. Chojnacka, M., Szewińska, J., Mielecki, M., Nykiel, M., Imai, R., Bielawski, W., and Orzechowski, S., A triticale water-deficit-inducible phytocystatin inhibits endogenous cysteine proteinases in vitro, J. Plant Physiol., 2015, vol. 174, pp. 161–165.

    Article  CAS  PubMed  Google Scholar 

  24. Smakowska, E., Czarna, M., and Janska, H., Mitochondrial ATP-dependent proteases in protection against accumulation of carbonylated proteins, Mitochondrion, 2014, vol. 19, pp. 245–251.

    Article  CAS  PubMed  Google Scholar 

  25. Barnaby, N.G., He, F., Liu, X., Wilson, K.A., and Tan-Wilson, A., Light-responsive subtilisin-related protease in soybean seedling leaves, Plant Physiol. Biochem., 2004, vol. 42, pp. 125–134.

    Article  CAS  PubMed  Google Scholar 

  26. Coffeen, W. and Wolpert, T., Purification and characterization of serine proteases that exhibit caspase-like activity and are associated with programmed cell death in Avena sativa, Plant Cell, 2004, vol. 16, pp. 857–873.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Minh-Thu, P.T., Hwang, D.J., Jeon, J.S., Nahm, B.H., and Kim, Y.K., Transcriptome analysis of leaf and root of rice seedling to acute dehydration, Rice, 2013, vol. 6: 38.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Yano, A., Suzuki, K., and Shinshi, H., A signaling pathway, independent of the oxidative burst, that leads to hypersensitive cell death in cultured tobacco cells includes a serine protease, Plant J., 1999, vol. 18, pp. 105–109.

    Article  CAS  Google Scholar 

  29. Rigas, S., Daras, G., Laxa, M., Marathias, N., Fasseas, C., Sweetlove, L.J., and Hatzopoulos, P., Role of Lon1 protease in post-germinative growth and maintenance of mitochondrial function in Arabidopsis thaliana, New Phytol., 2009, vol. 181, pp. 588–600.

    Article  CAS  PubMed  Google Scholar 

  30. Guo, R., Zhao, J., Wang, X., Guo, C., Li, Z., and Wang, Y., Constitutive expression of a grape aspartic protease gene in transgenic Arabidopsis confers osmotic stress tolerance, Plant Cell Tissue Organ Cult., 2015, vol. 121, pp. 275–287.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Miazek.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miazek, A., Nykiel, M. & Rybka, K. Drought tolerance depends on the age of the spring wheat seedlings and differentiates patterns of proteinases. Russ J Plant Physiol 64, 333–340 (2017). https://doi.org/10.1134/S1021443717030098

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443717030098

Keywords

Navigation