Skip to main content
Log in

Selenium ameliorates salinity stress in Petroselinum crispum by modulation of photosynthesis and by reducing shoot Na accumulation

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

This study was performed to understand the mechanisms for Se-enhanced resistance of parsley (Petroselinum crispum L.) plants to salinity stress. Plant growth was negatively affected by salt stress; however, Se treatments at 1 mg/L significantly improved the growth rate and enhanced the salt tolerance of seedlings. This increased tolerance in Se-supplied plants was obtained by reduced damaging effect on maximal quantum yield of photosystem II (PSII) (F v/F m) coupled with higher levels of carotenoids and non-photochemical quenching (NPQ). The performance index (PIABS), as evidence for modulation of PSII function, was downregulated by salt stress; while Se mitigated this effect. Moreover, analysis of OJIP transients demon-strated that Se reduced salt damaging effect on PSII function through improvement of excitation energy trapping (TR0/CS) and electron transport (ET0/CS) per excited cross-section of leaf. The Na concentrations in shoots and roots of parsley seedlings considerably enhanced after NaCl treatment. Interestingly, treatment of salt-stressed plants with Se decreased the Na contents in shoots via the limitation of the root-to-shoot translocation of Na and exclusion of Na from cell sap, as well as the retention of K/Na and Ca/Na ratios. These data provide the first evidence that the Se application alleviates salinity stress by enhancing PSII function and by decreasing Na content in the shoot via binding of Na to the root cell wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ABS/RC:

specific energy fluxes for absorption

DI0/RC:

dissipation at the level of the antenna chlorophylls

Chl:

chlorophyll

ET0/RC:

dissipation at the level of electron transport

F v/F m :

maximum quantum yield of PSII

NPQ :

non-photochemical quenching

PIABS :

performance indexes

TR0/RC:

specific energy fluxes for trapping

References

  1. Munns, R. and Tester, M., Mechanisms of salinity tolerance, Annu. Rev. Plant Biol., 2008, vol. 59, pp. 651–681.

    Article  CAS  PubMed  Google Scholar 

  2. Diao, M., Ma, L., Wang, J.W., Cui, J.X., Fu, A.F., and Liu, H.Y., Selenium promotes the growth and photo-synthesis of tomato seedlings under salt stress by enhancing chloroplast antioxidant defense system, J. Plant Growth Regul., 2014, vol. 33, pp. 671–682.

    Article  CAS  Google Scholar 

  3. Demidchik, V., Cuin, T.A., Svistunenko, D., Smith, S.J., Miller, A.J., Shabala, S., Sokolik, A., and Yurin, V., Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death, J. Cell Sci., 2010, vol. 123, pp. 1468–1479.

    Article  CAS  PubMed  Google Scholar 

  4. Hasanuzzaman, M., Hossain, M.A., and Fujita, M., Selenium-induced up-regulation of the antioxidant defense and methylglyoxal detoxification system reduces salinity-induced damage in rapeseed seedlings, Biol. Trace Elem. Res., 2011, vol. 143, pp. 1704–1721.

    Article  CAS  PubMed  Google Scholar 

  5. Kong, L., Wang, M., and Bi, D., Selenium modulates the activities of antioxidant enzymes, osmotic homeostasis and promotes the growth of sorrel seedlings under salt stress, Plant Growth Regul., 2005, vol. 45, pp. 155–163.

    Article  CAS  Google Scholar 

  6. Hawrylak-Nowak, B., Beneficial effects of exogenous selenium in cucumber seedlings subjected to salt stress, Biol. Trace Elem. Res., 2009, vol. 132, pp. 259–269.

    Article  CAS  PubMed  Google Scholar 

  7. Maxwell, K. and Johnson, G.N., Chlorophyll fluorescence— a practical guide, J. Exp. Bot., 2000, vol. 51, pp. 659–668.

    CAS  PubMed  Google Scholar 

  8. Van Heerden, P.D.R., Swanepoel, J.W., and Krüger, G.H.J., Modulation of photosynthesis by drought in two desert scrub species exhibiting C3-mode CO2 assimilation, Environ. Exp. Bot., 2007, vol. 61, pp. 124–136.

    Article  Google Scholar 

  9. Brestič, M. and Živčák, M., PSII fluorescence techniques for measurement of drought and high temperature stress signal in crop plants: protocols and applications, in Molecular Stress Physiology of Plants, Rout, G.R. and Das, A.B., Eds., Berlin, Heidelberg: Springer-Verlag, 2013, pp. 87–131.

    Chapter  Google Scholar 

  10. Strasser, R.J., Tsimilli-Michael, M., and Srivastava, A., Analysis of the chlorophyll a fluorescence transient, in Advances in Photosynthesis and Respiration, vol. 19, Chlorophyll a Fluorescence: A Signature of Photosynthesis, Papageorgiou, G.C. and Govindjee, Eds., Dordrecht: Springer-Verlag, 2004, pp. 321–362.

    Google Scholar 

  11. Álvaro, J.E., Lao, M.T., Urrestarazu, M., Baghour, M., and Abdelmajid, M., Effect of nutrient solution salinity and ionic concentration on parsley (Petroselinum crispum Mill.) essential oil yield and content, J. Plant Nutr., 2015, vol. 37, pp. 2236–2254.

    Google Scholar 

  12. Mazej, D., Osvald, J., and Stibilj, V., Selenium species in leaves of chicory, dandelion, lamb’s 351 lettuce and parsley, Food Chem., 2007, vol. 107, pp. 75–83.

    Article  Google Scholar 

  13. Johnson, C.M., Stout, P.R., Broyer, T.C., and Carlton, A.B., Comparative chlorine requirements of different plant species, Plant Soil, 1957, vol. 8, pp. 337–353.

    Article  CAS  Google Scholar 

  14. Lichtenthaler, H.K. and Wellburn, A.R., Determination of total carotenoids and chlorophylls a and b of leaf in different solvents, Biochem. Soc. Trans., 1985, vol. 11, pp. 591–592.

    Article  Google Scholar 

  15. Saqib, M., Zörb, C., and Schubert, S., Silicon-mediated improvement in the salt resistance of wheat (Triticum aestivum) results from increased sodium exclusion and resistance to oxidative stress, Funct. Plant Biol., 2008, vol. 35, pp. 633–639.

    Article  CAS  Google Scholar 

  16. Rogalla, H. and Römheld, V., Role of leaf apoplast in silicon-mediated manganese tolerance of Cucumis sativus L., Plant Cell Environ., 2002, vol. 25, pp. 549–555.

    Article  CAS  Google Scholar 

  17. Živčák, M., Olšovská, K., Slamka, P., Galambošová, J., Rataj, V., Shao, H.B., and Brestič, M., Application of chlorophyll fluorescence performance indices to assess the wheat photosynthetic functions influenced by nitrogen deficiency, Plant Soil Environ., 2014, vol. 60, pp. 210–215.

    Google Scholar 

  18. Lazár, D., The polyphasic chlorophyll a fluorescence rise measured under high intensity of exciting light, Funct. Plant Biol., 2006, vol. 33, pp. 9–30.

    Article  Google Scholar 

  19. Baker, N.R. and Rosenqvist, E., Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities, J. Exp. Bot., 2004, vol. 55, pp. 1607–1621.

    Article  CAS  PubMed  Google Scholar 

  20. Vaz, J. and Sharma, P.K., Relationship between xanthophyll cycle and non-photochemical quenching in rice (Oryza sativa L.) plants in response to light stress, Indian J. Exp. Bot., 2011, vol. 49, pp. 60–67.

    Google Scholar 

  21. Davey, M.W., Stals, E., Panis, B., Keulemans, J., and Swennen, R.L., High-through put determination of malondialdehyde in plant tissues, Anal. Biochem., 2005, vol. 347, pp. 201–207.

    Article  CAS  PubMed  Google Scholar 

  22. Azzabi, G., Pinnola, A., Betterle, N., Bassi, R., and Alboresi, A., Enhancement of non-photochemical quenching in the bryophyte Physcomitrella patens during acclimation to salt and osmotic stress, Plant Cell Physiol., 2012, vol. 53, pp. 1815–1825.

    Article  CAS  PubMed  Google Scholar 

  23. Takahashi, S. and Badger, M.R., Photoprotection in plants: a new light on photosystem II damage, Trends Plant Sci., 2011, vol. 16, pp. 53–60.

    Article  CAS  PubMed  Google Scholar 

  24. Murchie, E.H. and Niyogi, K.K., Manipulation of photoprotection to improve plant photosynthesis, Plant Physiol., 2011, vol. 155, pp. 86–92.

    Article  CAS  PubMed  Google Scholar 

  25. Hajiboland, R. and Keivanfar, N., Selenium supplementation stimulates vegetative and reproductive growth in canola (Brassica napus L.) plants, Acta Agric. Slov., 2012, vol. 99, pp. 13–19.

    Article  CAS  Google Scholar 

  26. Cazzonelli, C.I. and Pogson, B.J., Source to sink: regulation of carotenoid biosynthesis in plants, Trends Plant Sci., 2010, vol. 15, pp. 266–274.

    Article  CAS  PubMed  Google Scholar 

  27. Habibi, G. and Ajory, N., The effect of drought on photosynthetic plasticity in Marrubium vulgare plants growing at low and high altitudes, Plant Res., 2015, vol. 128, pp. 987–994.

    Article  CAS  Google Scholar 

  28. Zheng, Y., Jia, A., Ning, T., Xu, J., Li, Z., and Jiang, G., Potassium nitrate application alleviates sodium chloride stress in winter wheat cultivars differing in salt tolerance, J. Plant Physiol., 2008, vol. 165, pp. 1455–1465.

    Article  CAS  PubMed  Google Scholar 

  29. Hajiboland, R., Norouzi, F., and Poschenrieder, C., Growth, physiological, biochemical and ionic responses of pistachio seedlings to mild and high salinity, Trees, 2014, vol. 28, pp. 1065–1078.

    Article  CAS  Google Scholar 

  30. Pazurkiewicz-Kocot, K., Galas, W., and Kita, A., The effect of selenium on the accumulation of some metals in Zea mays L. plants treated with indole-acetic acid, Cell Mol. Biol. Lett., 2003, vol. 8, pp. 97–103.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Habibi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habibi, G. Selenium ameliorates salinity stress in Petroselinum crispum by modulation of photosynthesis and by reducing shoot Na accumulation. Russ J Plant Physiol 64, 368–374 (2017). https://doi.org/10.1134/S1021443717030086

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443717030086

Keywords

Navigation