Skip to main content
Log in

Chlorophyll fluorescence as an indicator of age-dependent changes in photosynthetic apparatus of wheat leaves

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Wheat (Triticum sativus L.) seedlings of various ages (2- to 16-day-old plants) were used to study age-dependent changes in the chlorophyll fluorescence induction (CFI) at various light intensities during flu- orescence measurements. Plants were raised in a growth chamber using hydroponics with expanded clay, controlled environmental conditions, and 690 µmol/(m2 s) photon flux density (PFD) of photosynthetically active radiation (PAR). Parameters of CFI were determined under actinic PFD of 380, 580, 820, and 1340 µmol/(m2 s) PAR. The fifth leaf from the stem base, exposed to uniform lighting, was sampled for measurements. This leaf emerged at the plant age of 16 days. Based on fluorescence data, we calculated the maximal photochemical quantum yield of photosystem II (F v/F m), the effective photochemical quantum yield of PSII (Yield), parameters of photochemical (qP) and non-photochemical (qN and NPQ) quenching of chlorophyll fluorescence, the F p/F t ratio, and the “vitality index” (fluorescence decrease ratio, R fd). At moderate actinic PFD, applied commonly in PAM fluorometers (about 380 µmol/(m2 s)), age-dependent changes in NPQ, F p/F t, and R fd were observed. Analysis of CFI parameters in wheat leaves of different ages at PFD increasing from 380 to 820 µmol/(m2 s) revealed that R fd, NPQ, and qN are the most sensitive markers of the leaf age among all parameters tested. These suitable indicators can be used for rapid assessment of the leaf age.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CFI:

chlorophyll fluorescence induction

F 0 and F m :

minimal and maximal levels of chlorophyll fluorescence after dark adaptation

F0, Fm, and F t :

minimal, maximal, and stationary levels of chlorophyll fluorescence in the light-adapted state

F p :

fluorescence intensity at the peak of CFI curve recorded under actinic illumination after preliminary dark adaptation

F v/F m :

the ratio of variable (F v = F m - F 0) to maximal (F m) fluorescence representing the maximal photochemical quantum yield of PSII

NPQ:

non-photochemical quenching in PSII

PAM:

pulse-amplitude modulated (fluorometry)

PAR:

photosynthetically active radiation

PFD:

photon flux density

PSI and PSII:

photosystem I and II

PSA:

photosynthetic apparatus

qN:

coefficient of non-photochemical quenching of chlorophyll fluorescence

qP:

coefficient of photochemical quenching of PSII fluorescence

R fd :

vitality index

Yield = (Fm - F t)/Fm :

effective photochemical quantum yield, i.e., the fraction of light energy used by PSII complexes for electron transport

References

  1. Korneev, D.Yu., Informatsionnye vozmozhnosti metoda induktsii fluorestsentsii khlorofilla (Information Capabilities of the Method of Chlorophyll Fluorescence Induction), Kiev: Alterpress, 2002.

    Google Scholar 

  2. Lichtenthaler, H.K., Buschmann, C., and Knapp, M., How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio Rfd of leaves with the PAM fluorometer, Photosynthetica, 2005, vol. 43, pp. 379–393.

    Article  CAS  Google Scholar 

  3. Baker, N.R., Chlorophyll fluorescence: a probe of photosynthesis in vivo, Annu. Rev. Plant Biol., 2008, vol. 59, pp. 89–113.

    Article  CAS  PubMed  Google Scholar 

  4. Lichtenthaler, H.K. and Rinderle, U., The role of chlorophyll fluorescence in the detection of stress conditions in plants, CRC Crit. Rev. Anal. Chem., 1988, vol. 19, pp. 29–85.

    Article  Google Scholar 

  5. Nesterenko, T.V., Tikhomirov, A.A., and Shikhov, V.N., Ontogenetic approach to the assessment of plant resistance to prolonged stress using chlorophyll fluorescence induction method, Photosynthetica, 2006, vol. 44, pp. 321–332.

    Article  CAS  Google Scholar 

  6. Ashraf, M. and Harris, P.J.C., Photosynthesis under stressful environments: an overview, Photosynthetica, 2013, vol. 51, pp. 163–190.

    Article  CAS  Google Scholar 

  7. Šesták, Z. and Šiffel, P., Leaf-age related differences in chlorophyll fluorescence, Photosynthetica, 1997, vol. 33, pp. 347–369.

    Google Scholar 

  8. Romanova, A.K., Semenova, G.A., Novichkova, N.S., Ignat’eva, A.R., Mudrik, V.A., and Ivanov, B.N., Physiological, biochemical, and fluorescence parameters of senescing sugar beet leaves in the vegetative phase of growth, Russ. J. Plant Physiol., 2011, vol. 58, pp. 271–282.

    Article  CAS  Google Scholar 

  9. Nath, K., Phee, P.K., Jeong, S., Lee, S.Y., Tatenj, Y., Allakhverdiev, S.I., Lee, C.H., and Nam, H.G., Agedependent changes in the functions and compositions of photosynthetic complexes in the thylakoid membranes of Arabidopsis thaliana, Photosynth. Res., 2013, vol. 117, pp. 547–556.

    Article  CAS  PubMed  Google Scholar 

  10. Wang, L.F. and Chen, Y.Y., Photosynthetic characterization at different senescence stages in an early senescence mutant of rice Oryza sativa L., Photosynthetica, 2011, vol. 49, pp. 140–144.

    Article  CAS  Google Scholar 

  11. Bukhov, N.G., Leaf senescence: an evaluation of limiting steps in photosynthesis by means of chlorophyll fluorescence–quenching coefficients and P700 redox changes in leaves, Russ. J. Plant Physiol., 1997, vol. 44, pp. 303–310.

    CAS  Google Scholar 

  12. Nesterenko, T.V., Shikhov, V.N., and Tikhomirov, A.A., The influence of leaf senescence on light dependence of chlorophyll fluorescence of radish leaves, Dokl. Biochem. Biophys., 2012, vol. 442, pp. 15–18.

    Article  CAS  PubMed  Google Scholar 

  13. Ghanem, M.E., Albacete, A., Martínez-Andújar, C., Acosta, M., Romero-Aranda, R., Dodd, I.C., Lutts, S., and Pérez-Alfocea, F., Hormonal changes during salinity-induced leaf senescence in tomato (Solanum lycopersicum L.), J. Exp. Bot., 2008, vol. 59, pp. 3039–3050.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Nesterenko, T.V., Shikhov, V.N., and Tikhomirov, A.A., Light dependence of slow chlorophyll fluorescence induction in the course of wheat leaf ontogeny, Dokl. Biochem. Biophys., 2014, vol. 454, pp. 38–41.

    Article  CAS  PubMed  Google Scholar 

  15. Mokronosov, A.T., Ontogeneticheskii aspekt fotosinteza (Developmental Aspect of Photosynthesis), Moscow: Nauka, 1981.

    Google Scholar 

  16. Nesterenko, T.V. and Tikhomirov, A.A., Ontogenetic approach in fluorescence studies of the photosynthesis apparatus of plants under stress, Biophysics, 2005, vol. 50, pp. 314–319.

    Google Scholar 

  17. Gepstein, S., Photosynthesis in senescence and aging in plants, Senescence and Aging in Plants, Leopold, A.C., Nooden, L., Eds., San Diego: Academic Press, 1988, pp. 85–109.

    Chapter  Google Scholar 

  18. Lim, P.O., Kim, H.J., and Nam, H.G., Leaf senescence, Annu. Rev. Plant Biol., 2007, vol. 58, pp. 115–136.

    Article  CAS  PubMed  Google Scholar 

  19. Nesterenko, T.V. and Tikhomirov, A.A., An ontogenetic approach to the assessment of plant resistance to stress factors based on the method of chlorophyll fluorescence induction, Dokl. Biochem. Biophys., 2003, vol. 388, pp. 4–7.

    Article  CAS  PubMed  Google Scholar 

  20. Nesterenko, T.V. and Sid’ko, F.Ya., Induction of chlorophyll a fluorescence in wheat flag leaf ontogeny, Biofizicheskie issledovaniya ekosistem (Biophysical Ecosystem Research), Terskov, I.A., Ed., Novosibirsk: Nauka, 1984.

    Google Scholar 

  21. Tikhomirov, A.A. and Sid’ko, F.Ya., Photosynthesys and structure of radish and wheat canopies as affected by radiation of different energy and spectral composition, Photosynthetica, 1988, vol. 16, pp. 191–195.

    Google Scholar 

  22. Roháček, K. and Barták, M., Technique of the modulated chlorophyll fluorescence: basic concepts, useful parameters, and some applications, Photosynthetica, 1999, vol. 37, pp. 339–363.

    Article  Google Scholar 

  23. Müller, P., Li, X.P., and Niyogi, K.K., Non-photochemical quenching. A response to excess light energy, Plant Physiol., 2001, vol. 125, pp. 1558–1566.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Andreev, V.P., Maslov, Yu.I., and Sorokoletova, E.F., Functional properties of photosynthetic apparatus in three Fucus species inhabiting the white sea: effect of dehydration, Russ. J. Plant Physiol., 2012, vol. 59, pp. 217–223.

    Article  CAS  Google Scholar 

  25. Shikhov, V.N., Velichko, V.V., Nesterenko, T.V., and Tikhomirov, A.A., Ontogenetic approach to assessment of chufa response to culture conditions by the method of chlorophyll fluorescence induction, Russ. J. Plant Physiol., 2011, vol. 58, pp. 359–363.

    Article  CAS  Google Scholar 

  26. Nesterenko, T.V., Tikhomirov, A.A., and Shikhov, V.N., Influence of excitation light intensity and leaf age on the slow chlorophyll fluorescence transient in radish, Biophysics, 2012, vol. 57, pp. 464–468.

    Article  CAS  Google Scholar 

  27. Bukhov, N.G., Makarova, V.V., and Krendeleva, T.E., Coordinated changes in the redox state of photosystem I and II in sunflower leaves at different irradiances, Russ. J. Plant Physiol., 1998, vol. 45, pp. 551–557.

    CAS  Google Scholar 

  28. Roháček, K., Chlorophyll fluorescence parameters: the definitions, photosynthetic meaning, and mutual relationships, Photosynthetica, 2002, vol. 40, pp. 13–29.

    Article  Google Scholar 

  29. Pfundel, E., Estimating the contribution of photosystem I to total leaf chlorophyll fluorescence, Photosynth. Res., 1998, vol. 56, pp. 185–195.

    Article  CAS  Google Scholar 

  30. Lazar, D., Simulations show that a small part of variable chlorophyll a fluorescence originates in photosystem I and contributes to overall fluorescence rise, J. Theor. Biol., 2014, vol. 335, pp. 249–264

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Nesterenko.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nesterenko, T.V., Shikhov, V.N. & Tikhomirov, A.A. Chlorophyll fluorescence as an indicator of age-dependent changes in photosynthetic apparatus of wheat leaves. Russ J Plant Physiol 62, 307–313 (2015). https://doi.org/10.1134/S1021443715020144

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443715020144

Keywords

Navigation