Skip to main content
Log in

Ultrastructural changes and dynamic expressions of FAD7, Cu/Zn-SOD, and Mn-SOD in Neosinocalamus affinis under cold stress

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

As one of the fast-growing species, bamboo plays an important role in ecological stability and wood processing industry. However, low temperature limitation is the basic problem for the cultivation and introduction of bamboo. In this study, the symptoms of cold stress influence on the native bamboo (Neosinocalamus affinis (Rendle) Keng f.) and hybrid bamboo (Bambusa pervariabilis × Dendrocalamopsis grandis) were observed under transmission electron microscope, and the dynamic responses of FAD7, Cu/Zn-SOD, and Mn-SOD genes to cold stress were identified in bamboo by real-time quantitative RT-PCR. Observation by electron microscopy indicated that bamboo is one of the most chilling-sensitive species with severe ultrastructural injury induced by chilling, but the native bamboo (N. affinis) is more cold-tolerant compared with the hybrid bamboo. Results obtained by real-time quantitative RT-PCR analysis revealed that FAD7, Cu/Zn-SOD, and Mn-SOD were all cold-inducible genes in N. affinis. In addition, dynamic response patterns of N. affinis Cu/Zn-SOD and Mn-SOD under cold stress were similar. This work is a fundamental research of hardiness physiology of bamboo and may contribute to the breeding program on obtaining transgenic bamboo species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CAT:

catalase

FAD7 :

gene of ω-3 fatty acid desaturase

POD:

peroxidase

qRT-PCR:

real-time quantitative RT-PCR

SOD:

superoxide dismutase

Cu/Zn-SOD :

gene of Cu, Zn-SOD

Mn-SOD :

gene of manganese-SOD

References

  1. Xin, Z. and Browse, J., Cold comfort farm: the acclimation of plants to freezing temperatures, Plant Cell Environ., 2000, vol. 23, pp. 893–902.

    Article  Google Scholar 

  2. Gilmour, S.J., Sebolt, A.M., Salazar, M.P., Everard, J.D., and Thomashow, M.F., Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation, Plant Physiol., 2000, vol. 124, pp. 1854–1865.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  3. Shinozaki, K., Yamaguchi-Shinozaki, K., and Seki, M., Regulatory network of gene expression in the drought and cold stress responses, Curr. Opin. Plant Biol., 2003, vol. 6, pp. 410–417.

    Article  PubMed  CAS  Google Scholar 

  4. Jaglo, K.R., Kleff, S., Amundsen, K.L., Zhang, X., Haake, V., Zhang, J.Z., Deits, T., and Thomashow, M.F., Components of the Arabidopsis C-repeat/dehydrationresponsive element binding factor cold-response pathway are conserved in Brassica napus and other plant species, Plant Physiol., 2001, vol. 127, pp. 910–917.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Ariizumi, T., Kishitani, S., Inatsugi, R., Nishida, I., Murata, N., and Toriyama, K., An increase in unsaturation of fatty acids in phosphatidylglycerol from leaves improves the rates of photosynthesis and growth at low temperatures in transgenic rice seedlings, Plant Cell Physiol., 2002, vol. 43, pp. 751–758.

    Article  PubMed  CAS  Google Scholar 

  6. Nogueira, F.T.S., de Rosa, V.E., Jr., Menossi, M., Ulian, E.C., and Arruda, P., RNA expression profiles and data mining of sugarcane response to low temperature, Plant Physiol., 2003, vol. 132, pp. 1811–1824.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Upchurch, R.G., Fatty acid unsaturation, mobilization, and regulation in the response of plants to stress, Biotechnol. Lett., 2008, vol. 30, pp. 967–977.

    Article  PubMed  CAS  Google Scholar 

  8. Lyons, J.M., Chilling injury in plants, Annu. Rev. Plant Physiol., 1973, vol. 24, pp. 445–466.

    Article  CAS  Google Scholar 

  9. Popov, V.N., Antipina, O.V., Pchelkin, V.P., and Tsydendambaev, V.D., Changes in the content and composition of lipid fatty acids in tobacco leaves and roots at low-temperature hardening, Russ. J. Plant Physiol., 2012, vol. 59, pp. 177–182.

    Article  CAS  Google Scholar 

  10. Kodama, H., Hamada, T., Horiguchi, G., Nishimura, M., and Iba, K., Genetic enhancement of cold tolerance by expression of a gene for chloroplast ω-3 fatty acid desaturase in transgenic tobacco, Plant Physiol., 1994, vol. 105, pp. 601–605.

    PubMed  CAS  PubMed Central  Google Scholar 

  11. Halliwell, B. and Gutteridge, J., Oxygen toxicity, oxygen radicals, transition metals and disease, Biochem. J., 1984, vol. 219, pp. 1–14.

    PubMed  CAS  PubMed Central  Google Scholar 

  12. Asada, K., Production and scavenging of reactive oxygen species in chloroplasts and their functions, Plant Physiol., 2006, vol. 141, pp. 391–396.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Xu, C., Zhao, L., Zhang, T., and Dai, Q., Measurement of cold tolerance based on REC and the logistic equation in four bamboos, Northern Horticult., 2009, vol. 2, pp. 182–184 (in Chinese).

    Google Scholar 

  14. Zhang, Y., Gao, J., and Xu, Y.M., Cloning and sequencing analysis of β-1,3-glucanase gene from moso bamboo, Mol. Plant Breed., 2010, vol. 8, pp. 533–541 (in Chinese).

    CAS  Google Scholar 

  15. Zhang, F., Wan, X.Q., Zhang, H.Q., Liu, G.L., Jiang, M.Y., Pan, Y.Z., and Chen, Q.B., The effect of cold stress on endogenous hormones and CBF1 homolog in four contrasting bamboo species, J. Forest Res., 2012, vol. 17, pp. 72–78.

    Article  Google Scholar 

  16. Ishikawa, H.A., Ultrastructural features of chilling injury: injured cells and the early events during chilling of suspension-cultured mung bean cells, Am. J. Bot., 1996, vol. 83, pp. 825–835.

    Article  Google Scholar 

  17. Kratsch, H. and Wise, R., The ultrastructure of chilling stress, Plant Cell Environ., 2000, vol. 23, pp. 337–350.

    Article  CAS  Google Scholar 

  18. Xu, P.L., Guo, Y.K., Bai, J.G., Shang, L., and Wang, X.J., Effects of long-term chilling on ultrastructure and antioxidant activity in leaves of two cucumber cultivars under low light, Physiol. Plant., 2008, vol. 132, pp. 467–478.

    Article  PubMed  CAS  Google Scholar 

  19. Ramalho, J., Quartin, V., Leitão, E., Campos, P., Carelli, M., Fahl, J., and Nunes, M., Cold acclimation ability and photosynthesis among species of the tropical Coffea genus, Plant Biol., 2003, vol. 5, pp. 631–641.

    Article  CAS  Google Scholar 

  20. Strand, Å., Hurry, V., Gustafsson, P., and Gardeström, P., Development of Arabidopsis thaliana leaves at low temperatures releases the suppression of photosynthesis and photosynthetic gene expression despite the accumulation of soluble carbohydrates, Plant J., 1997, vol. 12, pp. 605–614.

    Article  PubMed  CAS  Google Scholar 

  21. Feller, G., Life at low temperatures: is disorder the driving force? Extremophiles, 2007, vol. 11, pp. 211–216.

    Article  PubMed  CAS  Google Scholar 

  22. Kammer, A.R., Orczewska, J.I., and O’Brien, K.M., Oxidative stress is transient and tissue specific during cold acclimation of three spine stickleback, J. Exp. Biol., 2011, vol. 214, pp. 1248–1256.

    Article  PubMed  CAS  Google Scholar 

  23. Wu, G., Wilen, R.W., Robertson, A.J., and Gusta, L.V., Isolation, chromosomal localization, and differential expression of mitochondrial manganese superoxide dismutase and chloroplastic copper/zinc superoxide dismutase genes in wheat, Plant Physiol., 1999, vol. 120, pp. 513–520.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Perl-Treves, R. and Galun, E., The tomato Cu, Zn superoxide dismutase genes are developmentally regulated and respond to light and stress, Plant Mol. Biol., 1991, vol. 17, pp. 745–760.

    Article  PubMed  CAS  Google Scholar 

  25. Zhu, D. and Scandalios, J.G., Maize mitochondrial manganese superoxide dismutases are encoded by a differentially expressed multigene family, Proc. Natl. Acad. Sci. USA, 1993, vol. 90, pp. 9310–9314.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Pilon, M., Ravet, K., and Tapken, W., The biogenesis and physiological function of chloroplast superoxide dismutases, Biochim. Biophys. Acta — Bioenergetics, 2011, vol. 1807, pp. 989–998.

    Article  CAS  Google Scholar 

  27. Tsang, E.W., Bowler, C., Hérouart, D., van Camp, W., Villarroel, R., Genetello, C., van Montagu, M., and Inzé, D., Differential regulation of superoxide dismutases in plants exposed to environmental stress, Plant Cell, 1991, vol. 3, pp. 783–792.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Kargiotidou, A., Deli, D., Galanopoulou, D., Tsaftaris, A., and Farmaki, T., Low temperature and light regulate δ12 fatty acid desaturases (FAD2) at a transcriptional level in cotton (Gossypium hirsutum), J. Exp. Bot., 2008, vol. 59, pp. 2043–2056.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Yamasaki, H., Abdel-Ghany, S.E., Cohu, C.M., Kobayashi, Y., Shikanai, T., and Pilon, M., Regulation of copper homeostasis by micro-RNA in Arabidopsis, J. Biol. Chem., 2007, vol. 282, pp. 16 369–16 378.

    Article  CAS  Google Scholar 

  30. Wu, T.H., Liao, M.H., Kuo, W.Y., Huang, C.H., Hsieh, H.L., and Jinn, T.L., Characterization of copper/zinc and manganese superoxide dismutase in green bamboo (Bambusa oldhamii): cloning, expression and regulation, Plant Physiol. Biochem., 2011, vol. 49, pp. 195–200.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Zhang.

Additional information

This text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Zhu, X.Q., Guo, Y.L. et al. Ultrastructural changes and dynamic expressions of FAD7, Cu/Zn-SOD, and Mn-SOD in Neosinocalamus affinis under cold stress. Russ J Plant Physiol 61, 760–767 (2014). https://doi.org/10.1134/S1021443714050173

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443714050173

Keywords

Navigation