Skip to main content
Log in

Trichome expression of iaaM transgene influences their development and elongation in tobacco

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The iaaM gene encodes a monooxygenase, an enzyme that can catalyze the synthesis of IAA from tryptophan and is functional in plants. We cloned the iaaM into the T-DNA region of a Ti binary vector pWM101 under the control of the cotton fiber specific E6 promoter, and the recombinant was transformed into Nicotiana tabacum WS38 via leaf disc infection with Agrobacterium tumefaciencs GV3101 that harbored the Ti plasmid. Some 25 transformed seedlings were screened out, and the trichomes of the transgenic leaves were both denser and lengthier. The E6 promoter-specific expression of iaaM in trichomes led to the more active auxin synthesis in the cells and allowed the transgenic leaves to develop tidier and longer trichomes. As more trichomes developed on the transgenic leaves, the leaf epidermis appeared fuzzier than the wild control. The research showed that iaaM expression in trichomes influenced the development of trichomes both during their initiation and elongation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Simon, S. and Petrasek, P., Why plants need more than one type of auxin, Plant Sci., 2011, vol. 180, pp. 454–460.

    Article  PubMed  CAS  Google Scholar 

  2. Marks, M.D., Jonathan, P., Wenger, J.P., Gilding, E., Jilk, R., and Dixon, R.A., Transcriptome analysis of Arabidopsis wild-type and gl3-sst sim trichomes identifies four additional genes required for trichome development, Mol. Plant, 2009, vol. 2, pp. 803–822.

    Article  PubMed  CAS  Google Scholar 

  3. Daphne, J.O. and Michael, T.M., Hormones, Signals and Target Cells in Plant Development, New York: Cambridge Univ. Press, 2005.

    Google Scholar 

  4. Zhao, Y., Auxin biosynthesis and its role in plant development, Annu. Rev. Plant Biol., 2010, vol. 61, pp. 49–64.

    Article  PubMed  CAS  Google Scholar 

  5. Mezzetti, B., Pandolfini, T., and Navacchi, O., Genetic transformation of Vitis vinifera via organogenesis, BMC Biotechnol., 2002, vol. 2, pp. 18–27.

    Article  PubMed  Google Scholar 

  6. Mezzetti, B., Silvestroni, O., and Costantini, E., Genetic transformation of table grape via organogenesis and field evaluation of DefH9-iaaM transgenic plants, Acta Hortic., 2005, vol. 689, pp. 463–468.

    CAS  Google Scholar 

  7. Costantini, E., Landi, L., Silvestroni, O., Pandolfini, T., Spena, A., and Mezzetti, B., Auxin synthesis-encoding transgene enhances grape fecundity, Plant Physiol., 2007, vol. 143, pp. 1689–1694.

    Article  PubMed  CAS  Google Scholar 

  8. Mezzetti, B., Landi, L., Scortichini, L., Spena, A., Pandolfini, T., and Rebori, A., Genetic engineering of parthenocarpic fruit development in strawberry, Acta Hortic., 2002, vol. 567, pp. 101–104.

    Google Scholar 

  9. Mezzetti, B., Landi, L., and Pandolfini, T., The DefH9-iaaM auxin-synthesizing gene increases plant fecundity and fruit production in strawberry and raspberry, BMC Biotechnol., 2004, vol. 4, pp. 4–13.

    Article  PubMed  Google Scholar 

  10. Mezzetti, B., Costantini, E., and Chionchetti, F., Genetic transformation in strawberry and raspberry for improving plant productivity and fruit quality, Acta Hortic., 2004, vol. 649, pp. 107–110.

    Google Scholar 

  11. Donzella, G., Spena, A., and Rotino, G.L., Transgenic parthenocarpic eggplants: superior germplasm for increased winter production, Mol. Breed., 2000, vol. 6, pp. 79–86.

    Article  Google Scholar 

  12. Acciarri, N., Restaino, F., Vitelli, G., Perrone, D., Zottini, M., Pandolfini, T., Spena, A., and Rotino, G.L., Genetically modified parthenocarpic eggplants: improved fruit productivity under both greenhouse and open field cultivation, BMC Biotechnol., 2002, vol. 2, pp. 4–10.

    Article  PubMed  Google Scholar 

  13. Pandolfini, T., Rotino, G.L., Camerini, S., Defez, R., and Spena, A., Optimisation of transgene action at the post-transcriptional level: high quality parthenocarpic fruits in industrial tomatoes, BMC Biotechnol., 2002, vol. 2, pp. 1–11.

    Article  PubMed  Google Scholar 

  14. Rotino, G.L., Acciarri, N., Sabatini, E., Mennella, G., Lo, S.R., Maestrelli, A., Molesini, B., Pandolfini, T., Scalzo, J., Mezzetti, B., and Spena, A., Open field trial of genetically modified parthenocarpic tomato: seedlessness and fruit quality, BMC Biotechnol., 2005, vol. 5, pp. 32–39.

    Article  PubMed  Google Scholar 

  15. Yin, Z.M., Malinowski, R., Ziolkowska, A., Hans, S., Wojciech, P., and Stefan, M., The DefH9-iaaM-containing construct efficiently induces parthenocarpy in cucumber, Cell Mol. Biol., 2006, vol. 11, pp. 279–290.

    CAS  Google Scholar 

  16. Shaokun, S.U., Liu, H.U., and Qin, Z.W., Establishment of genetic transformation system by Agrobacterium-mediated parthenocarpy gene of cucumber, J. Northeast Agric. Univ., 2006, vol. 37, pp. 289–293.

    Google Scholar 

  17. Mi, Z., Xue, L.Z., Shui, Q.S., Qi, W.Z., Lei, H., De, M.L., Juan, Z., Yuan, W., Xian, B.L., and Ming, L., Spatiotemporal manipulation of auxin biosynthesis in cotton ovule epidermal cells enhances fiber yield and quality, Nature, 2011, vol. 29, pp. 453–458.

    Article  Google Scholar 

  18. Wen, H.X., Effects on agronomy characters of phytohormonal biosynthase genes: ipt, iaaM and ipt-iaaM in transgenic rapeseed, Agric. Sci. (Biol.) Dissertation, Chongqing: Southwest China Agricultural University, 2003.

    Google Scholar 

  19. John, M.E. and Crowl, J., Gene expression in cotton (Gossypium hirsutum L.) fiber: cloning of the mRNAs, Proc. Natl. Acad. Sci. USA, 1992, vol. 89, pp. 5769–5773.

    Article  PubMed  CAS  Google Scholar 

  20. Wu, A.M. and Liu, J.Y., Analysis of the cotton E6 promoter, Tsinghua Sci. Technol., 2005, vol. 10, pp. 1–5.

    Article  Google Scholar 

  21. Liu, X., Studies on auxin transportation and distribution and expression of related genes in pegging stage of peanut, Agric. Sci. (Biol.) Dissertation, Changsha: Hunan Agricultural University, 2003.

    Google Scholar 

  22. Cheng, Y., Dai, X., and Zhao, Y., Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis, Plant Cell, 2007, vol. 19, pp. 2430–2439.

    Article  PubMed  CAS  Google Scholar 

  23. Ni, D., Yu, X.H., and Wang, L.J., Aberrant development of pollen in transgenic tobacco expression bacterial iaaM gene driven by pollen- and tapetum-specific promoters, Acta Biol. Exp. Sinica, 2006, vol. 35, pp. 1–6.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. W. Zhang.

Additional information

This text was submitted by the authors in English.

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, Y., Huang, L.H., Peng, Y. et al. Trichome expression of iaaM transgene influences their development and elongation in tobacco. Russ J Plant Physiol 60, 839–844 (2013). https://doi.org/10.1134/S1021443713060174

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443713060174

Keywords

Navigation