Skip to main content
Log in

Mechanisms and physiological role of polarity in plants

  • Reviews
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The concept of polarity was the starting point for the attempts of many investigators to understand the principles of differentiation, because the polar organization underlies specific three-dimensional structure of the organism and provides for the integrity and coordination of its functions. The polarity axes are established at the stage of zygote, extending to the developing embryo, and they “vectorize” subsequent plant growth and development. Polarization of cells and tissues is crucial for plant morphogenesis, because the emerging morphogenetic gradients provide the basis for differential genome activity at various stages of plant development. This review deals with the polarity phenomena and the mechanisms of symmetry axis formation at the level of cells and plant tissues. The roles of electrical gradients, Ca2+ ions, auxin, cytoskeleton, ROP-proteins, phosphoinositides, and microRNA in polarization of cells and tissues are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BEP:

bioelectric potentials

IP3 :

inositol 1,4,5-trisphosphate

NPA:

naphthylphtalamic acid

TIBA:

2,3,5-triiodobenzoic acid

References

  1. Robinson, K.R. and McCaid, C., Electrical Fields, Calcium Gradients and Cell Growth, Annu. Rev. New York Acad. Sci., 1980, pp. 132–138.

  2. Bentrup, F.W., Cellular Polarity, Cellular Interactions, Linskens, H.F., Heslop-Harrison, J., Eds., Berlin: Springer-Verlag, 1984, pp. 473–490.

    Chapter  Google Scholar 

  3. Schnepf, E., Cellular Polarity, Annu. Rev. Plant Physiol., 1986, vol. 37, pp. 32–47.

    Article  Google Scholar 

  4. Cole, R.A. and Fowler, J.E., Polarized Growth: Maintaining Focus on the Tip, Curr. Opin. Plant Biol., 2006, vol. 9, pp. 579–588.

    Article  PubMed  CAS  Google Scholar 

  5. Jaffe, L. and Nuccitelli, R., Electrical Control of Development, Annu. Rev. Biophys. Bioeng., 1977, vol. 6, pp. 445–476.

    Article  PubMed  CAS  Google Scholar 

  6. Quatrano, R.S., Development of Cell Polarity, Annu. Rev. Plant Physiol., 1978, vol. 29, pp. 487–510.

    Article  CAS  Google Scholar 

  7. Pierson, E.S., Miller, D.D., Callaham, D.A., Shipley, A.M., and Rivers, B.A., Pollen Tube Growth Is Coupled to the Extracellular Calcium Ion Flux and the Intracellular Gradient: Effect of BAPTA-Type Buffers and Hypertonic Media, Plant Cell, 1994, vol. 6, pp. 1815–1828.

    PubMed  CAS  Google Scholar 

  8. Chen, T.H. and Jaffe, L.F., Forced Calcium Entry and Polarized Growth of Funaria Spores, Planta, 1979, vol. 144, pp. 401–406.

    Article  CAS  Google Scholar 

  9. Paciorek, T. and Bergmann, D.C., The Secret to Life Is Being Different: Asymmetric Divisions in Plant Development, Curr. Opin. Plant Biol., 2010, vol. 13, pp. 661–669.

    Article  PubMed  CAS  Google Scholar 

  10. Messerli, M. and Robinson, K.R., Tip Localized Ca2+ Pulses Coincident with Peak Pulsatile Growth Rates in Pollen Tubes of Lilium longiflorum, J. Cell Sci., 1997, vol. 110, pp. 1269–1278.

    PubMed  CAS  Google Scholar 

  11. Kropf, D.L., Induction of Polarity in Fucoid Zygotes, Plant Cell, 1997, vol. 9, pp. 1011–1020.

    Article  PubMed  CAS  Google Scholar 

  12. Hepler, P.K. and Wayne, R.O., Calcium and Plant Development, Annu. Rev. Plant Physiol., 1985, vol. 36, pp. 397–439.

    Article  CAS  Google Scholar 

  13. Medvedev, S.S., Calcium Signaling System in Plants, Russ. J. Plant Physiol., 2005, vol. 52, pp. 249–270.

    Article  CAS  Google Scholar 

  14. Hable, W.E. and Hart, P.E., Signaling Mechanisms in the Establishment of Plant and Fucoid Algal Polarity, Mol. Reprod. Dev., 2010, vol. 77, pp. 751–758.

    Article  PubMed  CAS  Google Scholar 

  15. Medvedev, S.S. and Markova, I.V., The Cytoskeleton and Plant Polarity, Russ. J. Plant Physiol., 1998, vol. 45, pp. 154–164.

    CAS  Google Scholar 

  16. Hopkins, C.R., Polarity Signals, Cell, 1991, vol. 66, pp. 827–829.

    Article  PubMed  CAS  Google Scholar 

  17. Franklin-Tong, V.E., Signaling and the Modulation of Pollen Tube Growth, Plant Cell, 1999, vol. 11, pp. 727–738.

    PubMed  CAS  Google Scholar 

  18. Isaeva, V.V., Kletki v morfogeneze (Cells in Morphogenesis), Moscow: Nauka, 1994.

    Google Scholar 

  19. Brawley, S.H. and Robinson, K.R., Cytochalasin Treatment Disrupt the Endogenous Currents Associated with Cell Polarization in Fucoid Zygotes: Studies of the Role of F-Actin in Embryogenesis, J. Cell Biol., 1985, vol. 100, pp. 1173–1184.

    Article  PubMed  CAS  Google Scholar 

  20. Pozhvanov, G.A., Suslov, D.V., and Medvedev, S.S., Actin Cytoskeleton Reorganization during Arabidopsis Root Gravistimulation, Tr. Tomskogo Gos. Univ., Ser. Biol., 2010, vol. 275, pp. 305–308.

    Google Scholar 

  21. Yamazaki, Y., Change of Birefringence in Cell Wall of Trichoblasts of Cibasis and Tradescantia, Biol. Plant., 1988, vol. 30, pp. 58–62.

    Article  Google Scholar 

  22. Hush, J.M. and Overall, R.L., Electrical and Mechanical Fields Orient Cortical Microtubules in Higher Plant Tissues, Cell Biol. Int. Rep., 1991, vol. 15, pp. 551–559.

    Article  Google Scholar 

  23. Shibaoka, H., Plant-Hormone Induced Changes in the Orientation of Cortical Microtubules: Alterations in the Cross-Linking between Microtubules and Plasma Membrane, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1994, vol. 45, pp. 527–544.

    Article  CAS  Google Scholar 

  24. Cyr, R.J., Calcium/Calmodulin Affects Microtubule Stability in Protoplasts, J. Cell Sci., 1991, vol. 100, pp. 311–317.

    CAS  Google Scholar 

  25. Andersland, J.M. and Parthasarathy, M.V., Conditions Affecting Depolymerization of Actin in Plant Homogenates, J. Cell Sci., 1993, vol. 104, pp. 1273–1279.

    CAS  Google Scholar 

  26. Kropf, D.L., Henry, C.A., and Gibbo, B.C., Measurement and Manipulation of Cytosolic pH in Polarizing Zygotes, Eur. J. Cell Biol., 1995, vol. 68, pp. 297–305.

    PubMed  CAS  Google Scholar 

  27. Bergfeld, R., Speth, V., and Schopfer, P., Reorientation of Microfibrils and Microtubules at the Outer Epidermal Wall of Maize Coleoptiles during Auxin-Mediated Growth, Bot. Acta, 1987, vol. 101, pp. 31–34.

    Google Scholar 

  28. Takesue, K. and Shibaoka, H., Auxin-Induced Longitudinal-to-Transverse Reorientation of Cortical Microtubules in Non Elongating Epidermal Cells of Azuki Bean Epicotyls, Protoplasma, 1999, vol. 206, pp. 27–30.

    Article  CAS  Google Scholar 

  29. Nick, P., Yatou, O., Furuya, M., and Lambert, A.M., Auxin-Dependent Microtubule Responses and Seedling Development Are Affected in Rice Mutant Resistant to EPC, Plant J., 1994, vol. 6, pp. 651–663.

    Article  CAS  Google Scholar 

  30. Mita, T. and Katsumi, M., Gibberellin Control of Microtubule Arrangement in Mesocotyl Epidermal Cells of the d5 Mutant of Zea mays L., Plant Cell Physiol., 1986, vol. 27, pp. 651–659.

    Google Scholar 

  31. Roberts, I.N., Lloyd, C.W., and Roberts, K., Ethylene-Induced Microtubule Reorientation: Mediation by Helical Arrays, Planta, 1985, vol. 164, pp. 439–447.

    Article  Google Scholar 

  32. Moon, S.Y. and Zheng, Y.R., GTPase-Activating Proteins in Cell Regulation, Trends Cell Biol., 2003, vol. 13, pp. 13–22.

    Article  PubMed  CAS  Google Scholar 

  33. Novikova, G.V. and Moshkov, I.E., Superfamily of Monomeric GTP-Binding Proteins in Plants: 1. Role of Rop Proteins in the Control of Plant Growth and Development, Russ. J. Plant Physiol., 2007, vol. 54, pp. 833–844.

    Article  CAS  Google Scholar 

  34. Fu, F. and Yang, Z., Rop GTPase: A Master Switch of Cell Polarity Development in Plants, Trends Plant Sci., 2001, vol. 6, pp. 545–547.

    Article  PubMed  CAS  Google Scholar 

  35. Samaj, J., Muller, J., Beck, M., Bohm, N., and Menzel, D., Vesicular Trafficking, Cytoskeleton and Signalling in Root Hairs and Pollen Tubes, Trends Plant Sci., 2006, vol. 11, pp. 594–600.

    Article  PubMed  CAS  Google Scholar 

  36. Fu, Y., The Actin Cytoskeleton and Signaling Network during Pollen Tube Tip Growth, J. Integr. Plant Biol., 2010, vol. 52, pp. 131–137.

    Article  PubMed  CAS  Google Scholar 

  37. Xu, J. and Scheres, B., Cell Polarity: ROPing the Ends Together, Curr. Opin. Plant Biol., 2005, vol. 8, pp. 613–618.

    Article  PubMed  CAS  Google Scholar 

  38. Ischebeck, T., Seiler, S., and Heilmann, I., At the Poles across Kingdoms: Phosphoinositides and Polar Tip Growth, Protoplasma, 2010, vol. 240, pp. 13–31.

    Article  PubMed  CAS  Google Scholar 

  39. Vincent, P., Chua, M., Nogue, F., Fairbrother, A., Mekeel, H., Xu, Y., Allen, N., Bibikova, T.N., Gilroy, S., and Bankaitis, V.A., A Sec14p Nodulin Domain Phosphatidylinositol Transfer Protein Polarizes Membrane Growth of Arabidopsis thaliana Root Hairs, J. Cell Biol., 2005, vol. 168, pp. 801–812.

    Article  PubMed  CAS  Google Scholar 

  40. Medvedev, S.S., Elektrofiziologiya rastenii (Plant Electrophysiology), St. Petersburg: St. Petersburg Gos. Univ., 1998.

    Google Scholar 

  41. Scott, B.I.H., Electric Fields in Plants, Annu. Rev. Plant Physiol., 1967, vol. 18, pp. 409–418.

    Article  CAS  Google Scholar 

  42. Weisenseel, M.H., Dorn, A., and Jaffe, L.F., Natural Currents Traverse Growing Roots and Root Hairs of Barley (Hordeum vulgare L.), Plant Physiol., 1979, vol. 64, pp. 512–518.

    Article  PubMed  CAS  Google Scholar 

  43. Brawley, S.H., Wetherell, D.F., and Robinson, K.R., Electrical Polarity in Embryos of Wild Carrot Precedes Cotyledon Differentiation, Proc. Natl. Acad. Sci. USA, 1984, vol. 81, pp. 6064–6067.

    Article  PubMed  CAS  Google Scholar 

  44. Bjorkman, T. and Leopold, A.C., An Electric Current Associated with Gravity Sensing in Maize Roots, Plant Physiol., 1987, vol. 84, pp. 841–846.

    Article  PubMed  CAS  Google Scholar 

  45. Toko, K., Hayashi, K., and Yamafuji, K., Spatio-Temporal Organization of Electricity in Biological Growth, Transactions of the Institute of Electronics and Communication Engineers of Japan, Sect. E, 1986, vol. 69, pp. 485–487.

    Google Scholar 

  46. Ezaki, S., Toko, K., Yamafuji, K., and Irie, F., Electric Potential Patterns around a Root of the Higher Plant, Transactions of the Institute of Electronics and Communication Engineers of Japan, Sect. E, 1988, vol. 71, pp. 965–967.

    Google Scholar 

  47. Miller, A.L. and Gow, N.A.R., Correlation between Profile of Ion-Current Circulation and Root Development, Physiol. Plant., 1989, vol. 75, pp. 102–108.

    Article  Google Scholar 

  48. Medvedev, S.S. and Markova, I.V., How Can the Electrical Polarity of Axial Organs Regulate Plant Growth and IAA Transport, Physiol. Plant., 1990, vol. 78, pp. 38–42.

    Article  CAS  Google Scholar 

  49. Vanneste, S. and Friml, J., Auxin: Trigger of Change in Plant Development, Cell, 2009, vol. 136, pp. 1005–1016.

    Article  PubMed  CAS  Google Scholar 

  50. Katekar, G.F., Interaction of Phytotropins with the NPA Receptor, Biol. Plant., 1985, vol. 27, pp. 92–99.

    Article  CAS  Google Scholar 

  51. Rubery, P.H. and Sheldrake, A.R., Carrier-Mediated Auxin Transport, Planta, 1974, vol. 118, pp. 101–121.

    Article  CAS  Google Scholar 

  52. Bennett, M., Marchant, A., Green, H., May, S., Ward, S., Millner, P., Walker, A.R., and Feldmann, K.A., Arabidopsis AUX1 Gene: A Permease-Like Regulator of Root Gravitropism, Science, 1996, vol. 273, pp. 948–950.

    Article  PubMed  CAS  Google Scholar 

  53. Kleine-Vehn, J., Dhonukshe, P., Swarup, R., Bennett, M., and Friml, J., A Novel Pathway for Subcellular Trafficking of AUX1 Auxin Influx Carrier, Plant Cell, 2006, vol. 18, pp. 3171–3181.

    Article  PubMed  CAS  Google Scholar 

  54. Blakeslee, J., Bandyopadhyay, A., Lee, O.-K., Mravec, J., Boosaree, T.B., Sauer, M., Makam, S., Cheng, Y., Bouchard, R., Adamec, J., Geisler, M., Nagashima, A., Sakai, T., Martinoia, E., Friml, J., Peer, W., and Murphy, A., Interactions among PIN-FORMED and P-Glycoprotein Auxin Transporters in Arabidopsis, Plant Cell, 2007, vol. 19, pp. 131–147.

    Article  PubMed  CAS  Google Scholar 

  55. Friml, J., Subcellular Trafficking of PIN Auxin Efflux Carriers in Auxin Transport, Eur. J. Cell Biol., 2010, vol. 89, pp. 231–235.

    Article  PubMed  CAS  Google Scholar 

  56. Paponov, I., Teale, W., Trebar, M., Blilou, I., and Palme, K., The PIN Auxin Efflux Facilitators: Evolutionary and Functional Perspectives, Trends Plant Sci., 2005, vol. 10, pp. 171–177.

    Article  Google Scholar 

  57. Friml, J., Auxin Transport — Shaping the Plant, Curr. Opin. Plant Biol., 2003, vol. 6, pp. 7–12.

    Article  PubMed  CAS  Google Scholar 

  58. Friml, J., Vieten, A., Sauer, M., Weijers, D., Schwarz, H., Hamann, T., Offringa, R., and Jürgens, G., Efflux-Dependent Auxin Gradients Establish the Apical-Basal Axis of Arabidopsis, Nature, 2003, vol. 426, pp. 147–153.

    Article  PubMed  CAS  Google Scholar 

  59. Muday, G.K. and DeLong, A., Polar Auxin Transport: Controlling Where and How Much, Trends Plant Sci., 2001, vol. 6, pp. 535–542.

    Article  PubMed  CAS  Google Scholar 

  60. Geldner, N., Friml, J., Stierhof, Y.-D., Jürgens, G., and Palme, K., Auxin Transport Inhibitors Block PIN1 Cycling and Vesicle Trafficking, Nature, 2001, vol. 413, pp. 425–428.

    Article  PubMed  CAS  Google Scholar 

  61. Geldner, N., Richter, S., Vieten, A., Marquardt, S., Torres-Ruiz, R., Mayer, U., and Jürgens, G., Partial Loss-of-Function Alleles Reveal a Role for GNOM in Auxin Transport-Related, Post-Embryonic Development of Arabidopsis, Development, 2003, vol. 131, pp. 389–400.

    Article  PubMed  Google Scholar 

  62. Dhonukshe, P., Tanaka, H., Goh, T., Ebine, K., Mähönen, A., Prasad, K., Blilou, I., Geldner, N., Xu, J., Uemura, T., Chory, J., Ueda, T., Nakano, A., Scheres, B., and Friml, J., Generation of Cell Polarity in Plants Links Endocytosis, Auxin Distribution and Cell Fate Decisions, Nature, 2008, vol. 456, pp. 962–967.

    Article  PubMed  CAS  Google Scholar 

  63. Klyachko, N.L., Plant Signaling Endosomes and Endosome Trafficking, Russ. J. Plant Physiol., 2010, vol. 57, pp. 290–296.

    Article  CAS  Google Scholar 

  64. Paciorek, T., Zažimalova, E., Ruthardt, N., Petrášek, J., Stierhof, Y.-D., Kleine-Vehn, J., Morris, D.A., Emans, N., Jürgens, G., Geldner, N., and Friml, J., Auxin Inhibits Endocytosis and Promotes Its Own Efflux from Cells, Nature, 2005, vol. 435, pp. 1251–1256.

    Article  PubMed  CAS  Google Scholar 

  65. Nick, P. and Han, M.-J., and An, G., Auxin Stimulates Its Own Transport by Shaping Actin Filaments, Plant Physiol., 2009, vol. 151, pp. 155–167.

    Article  PubMed  CAS  Google Scholar 

  66. Medvedev, S.S., Fiziologicheskie osnovy polyarnosti rastenii, in Tr. SPb. ob-va estestvoispytatelei (Physiological Basics of Plant Polarity), St. Petersburg: Kol’na, 1996.

    Google Scholar 

  67. Medvedev, S.S. and Markova, I.V., Role of Calcium Ions in Plant Growth and Mechanisms of IAA Action, Phytohormones in Plant Biotechnology and Agriculture, Macháková, I. and Romanov, G.A, Eds., Dordrecht: Kluwer, 2003, pp. 157–169.

    Google Scholar 

  68. De Guzman, C.C. and de la Fuente, R.K., Polar Calcium Flux in Sunflower Hypocotyl Segments. 1. The Effect of Auxin, Plant Physiol., 1984, vol. 76, pp. 347–352.

    Article  PubMed  Google Scholar 

  69. Banuelos, G.S., Bangerth, F., and Marschner, H., Relationship between Polar Basipetal Auxin Transport and Acropetal Ca2+ Transport into Tomato Fruits, Physiol. Plant., 1987, vol. 71, pp. 321–327.

    Article  CAS  Google Scholar 

  70. Banuelos, G.S., Bangerth, F., and Marschner, H., Basipetal Auxin Transport in Lettuce and Its Possible Involvement in Acropetal Calcium Transport and Incidence of Tip Burn, J. Plant Nutr., 1988, vol. 11, pp. 525–533.

    Article  CAS  Google Scholar 

  71. Medvedev, S.S., Markova, I.V., Batov, A.Yu., and Maksimov, G.B., Polar Calcium Ion Fluxes and Growth of Plant Tissues, Sov. Plant Physiol., 1989, vol. 36, pp. 990–997.

    CAS  Google Scholar 

  72. Markova, I.V., Katrichenko, M.I., Shevtsov, Yu.I., Batov, A.Yu., and Medvedev, C.C., Polar Ca2+ Fluxes in Plant Tissues. 2. A Mechanism of Their Formation, Russ. J. Plant Physiol., 1997, vol. 44, pp. 777–784.

    CAS  Google Scholar 

  73. Reinhart, B.J., Weinstein, E.G., Rhoades, M.W., Bartel, B., and Bartel, D.P., MicroRNAs in Plants, Genes Dev., 2001, vol. 16, pp. 1616–1626.

    Article  Google Scholar 

  74. Kidner, C.A. and Timmermans, M.C.P., Signaling Sides: Adaxial-Abaxial Patterning in Leaves, Curr. Topics Dev. Biol., 2010, vol. 91, pp. 141–168.

    Article  CAS  Google Scholar 

  75. Liu, Q. and Chen, Y.-Q., Insights into the Mechanism of Plant Development: Interactions of Mirnas Pathway with Phytohormone Response, Biochem. Biophys. Res. Commun., 2009, vol. 384, pp. 1–5.

    Article  PubMed  CAS  Google Scholar 

  76. Chuck, G., Candela, H., and Hake, S., Big Impacts by Small RNAs in Plant Development, Curr. Opin. Plant Biol., 2009, vol. 12, pp. 81–86.

    Article  PubMed  CAS  Google Scholar 

  77. Child, C.M., Patterns and Problems of Development, Chicago: University Press, 1941.

    Book  Google Scholar 

  78. Hamant, O., Traas, J., and Boudaoud, A., Regulation of Shape and Patterning in Plant Development, Curr. Opin. Genet. Dev., 2010, vol. 20, pp. 454–459.

    Article  PubMed  CAS  Google Scholar 

  79. Hoffmann, P. and Michaelis, G., Physiologische Gradienten in Primarblattern von Triticum aestivum L., Wiss. Z. Humboldt Univ., Berlin Math.-Naturwiss. R, 1976, vol. 25, pp. 787–795.

    CAS  Google Scholar 

  80. Prat, R., Gradient of Growth, Spontaneous Changes in Growth and Response to Auxin of Excised Hypocotyl Segments of Phaseolus aureus, Plant Physiol., 1978, vol. 62, pp. 75–79.

    Article  PubMed  CAS  Google Scholar 

  81. Borkoveč, V. and Procházka, S., IAA-Stimulated Transport of 14C-Sucrose in Growing and Non-Growing Etiolated Pea (Pisum sativum L.) Epicotyl Segments, Acta Univ. Agric., 1985, vol. 33A, pp. 357–363.

    Google Scholar 

  82. Peters, W.S. and Felle, H.H., The Correlation of Profiles of Surface pH and Elongation Growth in Maize Roots, Plant Physiol., 1999, vol. 121, pp. 905–912.

    Article  PubMed  CAS  Google Scholar 

  83. Ivanov, V.B., Kletochnye mekhanizmy rosta rastenii (Cell Mechanisms of Plant Growth), Moscow: Nauka, 2011.

    Google Scholar 

  84. Chailakhyan, M.Kh., Regulyatsiya tsveteniya vysshikh rastenii (Regulation of Higher Plant Flowering), Moscow: Nauka, 1988.

    Google Scholar 

  85. Noma, M., Koike, N., Sano, M., and Kawashima, N., Endogenous Indole-3-Acetic Acid in the Stem of Tobacco in Relation to Flower Neoformation as Measured by Mass Spectroscopic Assay, Plant Physiol., 1984, vol. 75, pp. 257–260.

    Article  PubMed  CAS  Google Scholar 

  86. Aloni, R., Vascular Differentiation within the Plant, Vascular Differentiation and Plant Growth Regulators, Roberts, L.V., Gahan, P.B., and Aloni, R., Eds., Berlin: Springer-Verlag, 1988, pp. 39–62.

    Chapter  Google Scholar 

  87. Roberts, A.W. and Haigler, C.H., Tracheary Element Differentiation in Suspension Cultured Cells of Zinnia Requires Uptake of Extracellular Ca2+, Planta, 1990, vol. 180, pp. 502–509.

    Article  CAS  Google Scholar 

  88. Santos, F., Teale, W., Fleck, C., Volpers, M., Ruperti, B., and Palme, K., Modelling Polar Auxin Transport in Developmental Patterning, Plant Biol., 2010, vol. 12,Suppl. 1, pp. 3–14.

    Article  PubMed  CAS  Google Scholar 

  89. Gersani, M., The Induction of Differentiation of Organized Vessels in a Storage Organ, Ann. Bot., 1987, vol. 59, pp. 31–34.

    CAS  Google Scholar 

  90. Gersani, M. and Sachs, T., Polarity Reorientation in Beans Expressed by Vascular Differentiation and Polar Auxin Transport, Differentiation, 1984, vol. 25, pp. 205–208.

    Article  Google Scholar 

  91. Warren, W.J., The Position of Regenerating Cambia: Auxin-Sucrose Ratio and the Gradient Induction Hypothesis, Proc. R. Soc. (London), 1978, vol. 203, pp. 153–176.

    Article  Google Scholar 

  92. Bowman, J.L. and Floyd, S.K., Patterning and Polarity in Seed Plant Shoots, Annu. Rev. Plant Biol., 2008, vol. 59, pp. 67–88.

    Article  PubMed  CAS  Google Scholar 

  93. Benjamins, R. and Scheres, B., Auxin: The Looping Star in Plant Development, Annu. Rev. Plant Biol., 2008, vol. 59, pp. 443–465.

    Article  PubMed  CAS  Google Scholar 

  94. Goldsworthy, A., The Electric Compass of Plant, New Sci., 1986, vol. 109, pp. 22–23.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Medvedev.

Additional information

Original Russian Text © S.S. Medvedev, 2012, published in Fiziologiya Rastenii, 2012, Vol. 59, No. 4, pp. 543–556.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Medvedev, S.S. Mechanisms and physiological role of polarity in plants. Russ J Plant Physiol 59, 502–514 (2012). https://doi.org/10.1134/S1021443712040085

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443712040085

Keywords

Navigation