Skip to main content
Log in

Activation of plasmalemmal NADPH oxidase in etiolated maize seedlings exposed to chilling temperatures

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Five-day-old etiolated seedlings of maize (Zea mays L.) were used to study the kinetics of hydrogen peroxide formation upon lowering growth temperature from 25 to 6°C. The total content of hydrogen peroxide in root and shoot tissues increased by 30–40% after 2-h cooling compared to the control level but returned to the initial level or decreased even lower after 24-h cooling. In order to prove the involvement of plasma membrane NADPH oxidase in changes of hydrogen peroxide content upon cooling, isolated plasma membranes were obtained from untreated plants and from seedlings chilled at 6°C for 2 and 24 h. The NADPH-dependent generation of superoxide anion radical in isolated plasma membranes was quantified by measuring the rate of formazan production from the tetrazolium salt XTT. The activity of plasma membrane NADPH oxidase in shoots was 50 ± 9 nmol O2/(mg protein min), which was 1.5 times higher than the activity in roots. The enzyme activity in plasma membranes was inhibited by low concentrations of diphenyleneiodonium. The effective concentration EC50 was 5.10 μM for shoots and 9.05 μM for roots. The activity of plasma membrane NADPH oxidase increased after 2-h cooling of seedlings but reversed to the control level after 24-h cooling. This transient activation of NADPH oxidase upon cooling was similar to the pattern of hydrogen peroxide formation in shoots and roots. Analysis of NADPH oxidase activity of plasma membrane proteins after their separation in denaturing conditions followed by subsequent renaturation revealed four diphenyleneiodonium-sensitive bands with mol wt of 130, 88, 51, and 48 kD. Western blot analysis of the reaction with antibodies against the catalytic domain of phagocyte NADPH oxidase revealed the proteins with mol wt of only 88 and 48 kD. The properties of molecular organization of plasma membrane NADPH oxidase are discussed in terms of its role in cell signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

SOD:

superoxide dismutase

XTT:

2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide inner salt

References

  1. Suzuki, N. and Mittler, R., Reactive Oxygen Species and Temperature Stresses: A Delicate Balance between Signaling and Destruction, Physiol. Plant., 2006, vol. 126, pp. 45–51.

    Article  CAS  Google Scholar 

  2. Penfield, S., Temperature Perception and Signal Transduction in Plants, New Phytol., 2008, vol. 179, pp. 615–628.

    Article  PubMed  CAS  Google Scholar 

  3. Mahalingam, R. and Fedoroff, N., Stress Response, Cell Death and Signaling: The Many Faces of Reactive Oxygen Species, Physiol. Plant., 2003, vol. 119, pp. 56–68.

    Article  CAS  Google Scholar 

  4. Foreman, J., Demidchik, V., Bothwell, J.H., Mylona, P., Miedema, H., Torres, M.A., Linstead, P., Costa, S., Brownlee, C., Jones, J.D., Davies, J.M., and Dolan, L., Reactive Oxygen Species Produced by NADPH Oxidase Regulate Plant Cell Growth, Nature, 2003, vol. 422, pp. 442–446.

    Article  PubMed  CAS  Google Scholar 

  5. Apel, K. and Hirt, H., Reactive Oxygen Species: Metabolism, Oxidative Stress, and Signal Transduction, Annu. Rev. Plant Biol., 2004, vol. 55, pp. 373–399.

    Article  PubMed  CAS  Google Scholar 

  6. Mittler, R., Vanderauwera, S., Gollery, M., and van Breusegem, F., Reactive Oxygen Gene Network of Plants, Trends Plant Sci., 2004, vol. 9, pp. 490–498.

    Article  PubMed  CAS  Google Scholar 

  7. Torres, M.A. and Dangl, J.L., Functions of the Respiratory Burst Oxidase in Biotic Interactions, Abiotic Stress and Development, Curr. Opin. Plant Biol., 2005, vol. 8, pp. 397–403.

    Article  PubMed  CAS  Google Scholar 

  8. Cona, A., Rea, G., Angelini, R., Federico, R., and Tavladoraki, P., Functions of Amine Oxidases in Plant Development and Defence, Trends Plant Sci., 2006, vol. 11, pp. 80–88.

    Article  PubMed  CAS  Google Scholar 

  9. Cosio, C. and Dunand, C., Specific Functions of Individual Class III Peroxidase Genes, J. Exp. Bot., 2009, vol. 60, pp. 391–408.

    Article  PubMed  CAS  Google Scholar 

  10. Bedard, K. and Krause, K.H., The NOX Family of ROS-Generating NADPH Oxidases: Physiology and Pathophysiology, Physiol. Rev., 2007, vol. 87, pp. 245–313.

    Article  PubMed  CAS  Google Scholar 

  11. Kobayashi, M., Ohura, I., Kawakita, K., Yokota, N., Fujiwara, M., Shimamoto, K., Doke, N., and Yoshioka, H., Calcium-Dependent Protein Kinase Regulate the Production of Reactive Oxygen Species by Potato NADPH Oxidase, Plant Cell, 2007, vol. 19, pp. 1065–1080.

    Article  PubMed  CAS  Google Scholar 

  12. Wong, H.L., Pinontoan, R., Hayashi, K., Tabata, R., Yaeno, T., Hasegawa, K., Kojima, C., Yoshioka, H., Iba, K., Kawasaki, T., and Shimamoto, K., Regulation of Rice NADPH Oxidase by Binding of Rac GTPase to Its N-Terminal Extension, Plant Cell, 2007, vol. 19, pp. 4022–4034.

    Article  PubMed  CAS  Google Scholar 

  13. Ogasawara, Y., Kaya, H., Hiraoka, G., Yumota, F., Kimura, S., Kadota, Y., Hishinuma, H., Senzaki, E., Yamagoe, S., Nagata, K., Nara, M., Suzuki, K., Tanokura, M., and Kuchitsu, K., Synergistic Activation of the Arabidopsis NADPH Oxidase AtrbohD by Ca2+ and Phosphorylation, J. Biol. Chem., 2008, vol. 283, pp. 8885–8892.

    Article  PubMed  CAS  Google Scholar 

  14. Miller, G., Shulaev, V., and Mittler, R., Reactive Oxygen Signalling and Abiotic Stress, Physiol. Plant., 2008, vol. 133, pp. 481–489.

    Article  PubMed  CAS  Google Scholar 

  15. Miller, G., Schalauch, K., Tam, R., Cortes, D., Torres, M.A., Shulaev, V., Dangl, J.L., and Mittler, R., The Plant NADPH Oxidase RBOHD Mediates Rapid Systemic Signalling in Response to Diverse Stimuli, Sci. Signal, 2009, vol. 2, no. 84, p. ra45, DOI:101126/scisignal.2000448.

    Article  PubMed  Google Scholar 

  16. Brennan, T. and Frenkel, C., Involvement of Hydrogen Peroxide in the Regulation of Senescence in Pear, Plant Physiol., 1977, vol. 59, pp. 411–416.

    Article  PubMed  CAS  Google Scholar 

  17. Trofimova, M.S., Zhestkova, I.M., Andreev, I.M., Svinov, M.M., Bobylev, Yu.S., and Sorokin, E.M., Osmotic Water Permeability of Vacuolar and Plasma Membranes Isolated from Maize Roots, Russ. J. Plant Physiol., 2001, vol. 48, pp. 287–293.

    Article  CAS  Google Scholar 

  18. Sagi, M. and Fluhr, R., Superoxide Production by Plant Homologues of the gp91phox NADPH Oxidase. Modulation of Activity by Calcium and by Tobacco Mosaic Virus Infection, Plant Physiol., 2001, vol. 126, pp. 1281–1290.

    Article  PubMed  CAS  Google Scholar 

  19. Rouet, M.-A., Mathieu, Y., Barbier-Brygoo, H., and Lauriere, C., Characterization of Active Oxygen-Producing Proteins in Response to Hypoosmolarity in Tobacco and Arabidopsis Cell Suspensions: Identification of a Cell Wall Peroxidase, J. Exp. Bot., 2006, vol. 57, pp. 1323–1332.

    Article  PubMed  CAS  Google Scholar 

  20. Prassad, T.K., Anderson, M.D., Martin, B.A., and Stewart, C.R., Evidence for Chilling-Induced Oxidative Stress in Maize Seedlings and a Regulatory Role for Hydrogen Peroxide, Plant Cell, 1994, vol. 6, pp. 65–74.

    Article  Google Scholar 

  21. Johansson, F., Olbe, M., Sommarin, M., and Larsson, C., Brij 58, a Polyoxyethylene Acyl Ether, Creates Membrane Vesicles of Uniform Sidedness. A New Tool to Obtain Inside-Out (Cytoplasmic SideOut) Plasma Membrane Vesicles, Plant J., 1995, vol. 7, pp. 165–173.

    Article  PubMed  CAS  Google Scholar 

  22. Keller, T., Damude, H.G., Werner, D., Doerner, P., Dixon, R.A., and Lamb, C., A Plant Homolog of the Neutrophil NADPH Oxidase gp91phox Subunit Gene Encodes a Plasma Membrane Protein with Ca2+ Binding Motifs, Plant Cell, 1998, vol. 10, pp. 255–256.

    Article  PubMed  CAS  Google Scholar 

  23. Kumar, G.N.M., Iyer, S., Knowles, N.R., and Strboh, A., Homologue of NADPH Oxidase Regulates Wound-Induced Oxidative Burst and Facilitates Wound-Healing in Potato Tubers, Planta, 2007, vol. 227, pp. 25–36.

    Article  PubMed  CAS  Google Scholar 

  24. Demidchik, V., Shabala, S.N., Coutts, K.B., Tester, M.A., and Davies, J.M., Free Oxygen Radicals Regulate Plasma Membrane Ca2+- and K+-Permeable Channels in Plant Root Cells, J. Cell Sci., 2003, vol. 116, pp. 81–88.

    Article  PubMed  CAS  Google Scholar 

  25. Oda, T., Hashimoto, H., Kuwabara, N., Akashi, S., Hayashi, K., Kojima, C., Wong, H.L., Kawasaki, T., Shimamoto, R., Sato, M., and Shimizu, T., Structure of the N-Terminal Regulatory Domain of a Plant NADPH Oxidase and Its Functional Implications, J. Biol. Chem., 2010, vol. 285, pp. 1435–1445.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. S. Piotrovskii.

Additional information

Original Russian Text © M.S. Piotrovskii, T.A. Shevyreva, I.M. Zhestkova, M.S. Trofimova, 2011, published in Fiziologiya Rastenii, 2011, Vol. 58, No. 2, pp. 234–242.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Piotrovskii, M.S., Shevyreva, T.A., Zhestkova, I.M. et al. Activation of plasmalemmal NADPH oxidase in etiolated maize seedlings exposed to chilling temperatures. Russ J Plant Physiol 58, 290–298 (2011). https://doi.org/10.1134/S1021443711020154

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443711020154

Keywords

Navigation