Skip to main content
Log in

Vacuolar symplast formation is due to highly permeable gap junctions between the tonoplast and endoplasmic reticulum membrane

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

An NMR method with a pulsed magnetic field gradient was applied to study changes in water permeability of the vacuolar symplast in maize (Zea mays L.) seedling roots treated with various inhibitors of cell metabolism. The results were qualitatively analogous to literature data on conductivity changes of intercellular gap junctions in animal cells exposed to similar treatments. Electron microscopy examination of root cells provided evidence for the existence of membrane contacts between the endoplasmic reticulum and the tonoplast. It is supposed that vacuoles of neighboring plant cells are interconnected through highly dynamical gap junctions between the tonoplast and the endoplasmic reticulum membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BDM:

2,3-butanedione monoxime

DNP:

2,4-dintrophenol

ER:

endoplasmic reticulum

PMFG NMR:

pulsed magnetic field gradient NMR method

SDC:

self-diffusion coefficient

References

  1. Gamalei, Yu.V., Transportnaya sistema sosudistykh rastenii (Transport System of Vascular Plants), St. Petersburg: St. Petersburg Gos. Univ., 2004.

    Google Scholar 

  2. Gamalei, Yu.V., Dynamic Net Organization of Plastids and Mitochondria in Plant Cells, Tsitologiya, 2006, vol. 48, no. 4, pp. 271–282.

    Google Scholar 

  3. Velikanov, G.A., Volobueva, O.V., Belova, L.P., and Gaponenko, E.M., Vacuolar Symplast as a Regulated Pathway for Water Flows in Plants, Russ. J. Plant Physiol., 2005, vol. 52, pp. 326–331.

    Article  CAS  Google Scholar 

  4. Velikanov, G.A., Vacuolar Symplast and Methodological Approach to Monitoring Water Self-Diffusion between Vacuoles of Contacting Root Cells, Russ. J. Plant Physiol., 2007, vol. 54, pp. 683–692.

    Article  CAS  Google Scholar 

  5. Sibgatullin, T.A., Anisimov, A.V., de Yager, P.A., Fergeldt, F.I., Gerkema, E., and van As, H., Analysis of Diffusive and Relaxational Water Behavior in Apple Pulp Cells, Biofizika, 2007, vol. 52, pp. 268–276.

    PubMed  CAS  Google Scholar 

  6. Gamalei, Yu.V., The Role of Mesophyll Cell Tonoplast in Determining the Route of Phloem Loading. Thirty Years of the Studies of Phloem Loading, Russ. J. Plant Physiol., 2007, vol. 54, pp. 1–9.

    Article  CAS  Google Scholar 

  7. Gamalei, Yu.V., Supercellular Plant Organization, Russ. J. Plant Physiol., 1997, vol. 44, pp. 706–730.

    CAS  Google Scholar 

  8. Gordon, L.Kh., Dykhanie i vodno-solevoi obmen rastitel’nykh tkanei (Respiration and Water and Salt Metabolism in Plant Tissues), Moscow: Nauka, 1976.

    Google Scholar 

  9. White, R.G., Badelf, K., Overall, R.L., and Vesk, M., Actin Associated with Plasmodesmata, Protoplasma, 1994, vol. 180, pp. 169–184.

    Article  CAS  Google Scholar 

  10. Arkhipenko, V.I., Gerbil’skii, L.V., Cherchenko, Yu.P., and Chuich, G.A., Structure and Functions of Intercellular Contacts, Struktura i funktsii biologicheskikh membran (Structure and Functions of Biological Membranes), Troshin, A.S., Ed., Moscow: Nauka, 1975, pp. 77–95.

    Google Scholar 

  11. Safranyost, R.G. and Caveney, S., Rates of Diffusion of Fluorescent Molecules via Intercellular Membrane Channels, J. Cell Biol., 1983, vol. 97, no. 5, part 2, p. 82.

    Google Scholar 

  12. Pakhomova, V.M., Models of Stress Effects and Total Biological Rules, Nespetsificheskie i spetsificheskie kharakteristiki otvetnoi reaktsii kletok rastenii, Nauch.-metod. izd (Non-Specific and Specific Characteristics of Plant Cell Response), Kazan: Kazan. Gos. S.-kh. Akademiya, 1999.

    Google Scholar 

  13. Yahalom, A., Maize Mesocotyl Plasmodesmata Proteins Cross-React with Connexin Gap Junction Protein Antibodies, Plant Cell, 1991, vol. 3, pp. 407–417.

    Article  PubMed  CAS  Google Scholar 

  14. Rassat, J., Robenek, H., and Themann, H., The Effect of Cytochalasin B on Gap and Tight Junction of the Mouse Liver as Revealed in Tracer Studies Employing Qualitative and Quantitative Freeze-Fracture Techniques, Abst. 10th Int. Congr. Electron Microscopy 1982 (Aug. 17–24, 1982, Hamburg), Frankfurt on Main, 1982, vol. 3, pp. 233–234.

    Google Scholar 

  15. Bennett, M.V.L., Spray, D.C., and Harris, A.L., Electrical Coupling in Development, Am. J. Zool., 1981, vol. 21, pp. 413–427.

    CAS  Google Scholar 

  16. Obaid, A.L., Socolar, S.J., and Rose, B., Cell-to-Cell Channels with Two Independently Regulated Gates in Series: Analysis of Junctional Conductance Modulation by Membrane Potential, Calcium and pH, J. Membr. Biol., 1983, vol. 73, pp. 69–89.

    Article  PubMed  CAS  Google Scholar 

  17. Radu, A., Dahl, G., and Loewenstein, W.R., Hormonal Regulation of Cell Junction Permeability, J. Membr. Biol., 1982, vol. 70, pp. 239–251.

    Article  PubMed  CAS  Google Scholar 

  18. Velikanov, G.A., Gordon, L.Kh., Volkov, V.Ya., and Barysheva, T.S., Investigation of Cell Membrane Permeability In Vivo Using NMR Method, Fiziol. Biokh. Kul’t. Rast., 1977, vol. 9, pp. 197–201.

    Google Scholar 

  19. Velikanov, G.A., Tsentsevitskii, A.N., Nuriev, I.Kh., Evarestov, A.S., and Gordon, L.Kh., Intercellular Water and Ion Transport in Wheat Seedling Roots, Sov. Plant Physiol., 1992, vol. 39, pp. 972–982.

    Google Scholar 

  20. Clarkson, D., Ion Transport and Cell Structure in Plants, New York: McGraw-Hill, 1974.

    Google Scholar 

  21. Lyalin, O.O., Electric Properties of Cell Membranes and Intracellular Contacts in Higher Plants, Doctoral (Biol.) Dissertation, Moscow: Timiryazev Inst. Plant Physiol. Acad. Sci. USSR, 1980.

    Google Scholar 

  22. Lyalin, O.O., Ktitorova, I.N., Barmicheva, E.M., and Akhmedov, N.I., Intercellular Contacts in Submerged Trichomes of Salvinia natans, Sov. Plant Physiol., 1986, vol. 33, pp. 432–446.

    Google Scholar 

  23. Holdaway-Clarke, T.L., Walker, N.A., Hepler, P.K., and Overall, R.L., Physiological Elevations in Cytoplasmic Free Calcium by Cold or Ion Injection Result in Transient Closure of Higher Plant Plasmodesmata, Planta, 2000, vol. 210, pp. 329–335.

    Article  PubMed  CAS  Google Scholar 

  24. Minibayeva, F., Polygalova, O., Alyabyev, A., and Gordon, L., Structural and Functional Changes in Root Cells Induced by Calcium Ionophore A23187, Plant Soil, 2000, vol. 219, pp. 169–175.

    Article  CAS  Google Scholar 

  25. Ponomareva, A.A., and Polygalova, O.O., The Effect of Ionophore High Concentration on the Structure and Function of Wheat Root Cells, Tsitologiya, 2006, vol. 48, no. 3, pp. 199–207.

    CAS  Google Scholar 

  26. Kursanov, A.L., Transport assimilyatov v rastenii, Moscow: Nauka, 1976. Translated under the title Assimilate Transport in Plants, Amsterdam: Elsevier, 1984.

    Google Scholar 

  27. Vakhmistrov, D.B., Prostranstvennaya organizatsiya ionnogo transporta v korne. 49-e Timiryazevskoe chtenie (Spatial Organization of Ion Transport in the Root, the 49th Timiryazev Lecture), Moscow: Nauka, 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. A. Velikanov.

Additional information

Original Russian Text © G.A. Velikanov, L.P. Belova, V.Yu. Levanov, 2008, published in Fiziologiya Rastenii, 2008, Vol. 55, No. 6, pp. 921–930.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Velikanov, G.A., Belova, L.P. & Levanov, V.Y. Vacuolar symplast formation is due to highly permeable gap junctions between the tonoplast and endoplasmic reticulum membrane. Russ J Plant Physiol 55, 834–842 (2008). https://doi.org/10.1134/S1021443708060149

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443708060149

Key words

Navigation