Skip to main content
Log in

Symplasmic transport of water along the root depends on pressure

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The gradient NMR method was applied to study intercellular water flows in root segments of maize (Zea mays L.) under disturbance of root hydrodynamic system by the increase in external pressure up to 4 MPa. The rate of intercellular water flows along the root symplast was found to depend on the magnitude and dynamics of pressure changes. Based on the previously predicted cupola-shaped dependency of water flow on the aperture of plasmodesmal neck constrictions, we assume that the external pressure stimulates (via cytosolic calcium) the activity of contractile structures localized in the neck regions of plasmodesmata. Cells of Chlorella vulgaris were taken for comparison since their water relations and cell structure differ strongly from the root cells of maize. The results show that the diffusional water flow in Chlorella is independent of external pressure both in intact cells and in algae, whose plasma membrane was artificially permeabilized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DD:

diffusion-mediated magnetization decay

Gd-DPA:

Gd salt of diethylenetriamine pentaacetic acid

References

  1. Holbrook, N.M. and Zwieniecki, M.A., Transporting water to the tops of trees, Rhysics Today, 2008, pp. 76–77.

    Google Scholar 

  2. Cosgrove, D.J., Water uptake by growing cells: an assessment of the controlling roles of wall relaxation, solute uptake and hydraulic conductance, Int. J. Plant Sci., 1993, vol. 154, pp. 10–21.

    Article  CAS  PubMed  Google Scholar 

  3. Zonia, L. and Munnik, T., Life under pressure: hydrostatic pressure in cell growth and function, Trends Plant Sci., 2007, vol. 12, pp. 90–97.

    Article  CAS  PubMed  Google Scholar 

  4. Zonia, L. and Munnik, T., Understanding pollen tube growth: the hydrodynamic model versus the cell wall model, Trends Plant Sci., 2011, vol. 16, pp. 347–352.

    Article  CAS  PubMed  Google Scholar 

  5. Winship, L.J., Obermeyer, G., Geitmann, A., and Hepler, P.K., Under pressure, cell walls set the pace, Trends Plant Sci., 2010, vol. 15, pp. 363–369.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Kroeger, J.H., Zerzour, R., and Geitmann, A., Regulator or driving force? The role of turgor pressure in oscillatory plant cell growth, PLoS ONE, 2011, vol. 6: e18549.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Winship, L.J., Obermeyer, G., Geitmann, A., and Hepler, P.K., Pollen tubes and the physical world, Trends Plant Sci., 2011, vol. 16, pp. 353–355.

    Article  CAS  PubMed  Google Scholar 

  8. Roberts, A.G. and Oparka, K.J., Plasmodesmata and the control of symplastic transport, Plant Cell Environ., 2003, vol. 26, pp. 103–124.

    Article  Google Scholar 

  9. Oparka, K.J. and Prior, D.A.M., Direct evidence for pressure-generated closure of plasmodesmata, Plant J., 1992, vol. 2, pp. 741–750.

    Article  Google Scholar 

  10. Rivalain, N., Roquain, J., and Demazeau, G., Development of high hydrostatic pressure in biosciences. Pressure effect on biological structures and potential applications in biotechnologies, Biotechnol. Adv., 2010, vol. 28, pp. 659–672.

    Article  CAS  PubMed  Google Scholar 

  11. Zyalalov, A.A. and Anisimov, A.V., Effect of water polar transport in plants under nongradient pressure, Dokl. Akad. Nauk SSSR, 1984, vol. 274, pp. 1013–1016.

    Google Scholar 

  12. Anisimov, A.V., Abdrakhimov, F.A., Suslov, M.A., and Ionenko, I.F., Intracellular structural changes and water transport in plants under pressure, Mater. dokl. IV s“ezda biofizikov Rossii. Simp. III “Fizika — meditsine i ekologii” (Proc. IV Symp. of Biophysicists in Russia. III. Physics for Medicine and Ecology), Nizhnii Novgorod, 2012, p. 14.

    Google Scholar 

  13. Borghetti, M., Leonardi, S., Raschi, A., Snyderman, D., and Tognetti, R., Ecotypic variation of xylem embolism, phenological traits, growth parameters and allozyme characteristics in Fagus, Funct. Ecol., 1993, vol. 7, pp. 713–720.

    Article  Google Scholar 

  14. Kholodova, V.P., Meshcheryakov, A.B., Rakitin, V.Yu., Karyagin, V.V., and Kuznetsov, Vl.V., Hydraulic signal as a “primary messenger of water deficit” under salt stress in plants, Dokl. Biol. Sci., 2006, vol. 407, pp. 155–157.

    Article  CAS  PubMed  Google Scholar 

  15. Abdrakhimov, F.A., Suslov, M.A., and Anisimov, A.V., The effect of hydrostatic pressure on structural organization of maize root cells, Cell Tissue Biol., 2013, vol. 55, pp. 479–486.

    Article  Google Scholar 

  16. Anisimov, A.V., Suslov, M.A., and Zuikov, V.A., Accessories for investigation of mass transfer induced by static and dynamic pressure in sensor of gradient NMR, Datchiki i sistemy, 2012, no. 7, pp. 64–67.

    Google Scholar 

  17. Savel’ev, I.V., Mechanics, molecular physics, Kurs obshchei fiziki (Course of General Physics), Moscow: Fizmatlit, 1998, vol. 1.

  18. Anisimov, A.V. and Ratkovich, S., Transport vody v rasteniyakh. Issledovanie impul’snym metodom YaMR (Water Transport in Plants. Investigations by Impulse NMR Method), Moscow: Nauka, 1992.

    Google Scholar 

  19. Tanner, J.E., Use of the stimulated echo in NMR diffusion studies, J. Chem. Phys., 1970, vol. 52, pp. 2523–2526.

    Article  CAS  Google Scholar 

  20. Anisimov, A.V., Ionenko, I.F., and Romanov, A.V., The NMR spin-echo method is used for measurements of the translational water diffusion selectively along the apoplast and the vacuolar and cytoplasmic symplasts of plant tissue, Biofizika, 2004, vol. 49, pp. 891–896.

    CAS  PubMed  Google Scholar 

  21. Valiullin, R. and Skirda, V., Time dependent self-diffusion coefficient of molecules in porous media, J. Chem. Phys., 2001, vol. 114, pp. 452–458.

    Article  CAS  Google Scholar 

  22. Anisimov, A.V., Evarestov, A.S., Ionenko, I.F., and Gusev, N.A., The impulse NMR method for cell-to-cell symplast water transfer study, Dokl. Akad. Nauk SSSR, 1983, vol. 271, pp. 1246–1249.

    Google Scholar 

  23. Anisimov, A.V., Pulsed NMR in diffusion water transfer study in biological structures, Stud. Biophys., 1982, vol. 91, pp. 1–8.

    CAS  Google Scholar 

  24. Anisimov, A.V. and Egorov, A.G., Plasmodesmata as a modulator of osmotic water fluxes in plants, Russ. J. Plant Physiol., 2002, vol. 49, pp. 677–684.

    Article  CAS  Google Scholar 

  25. Robards, A.W., Plasmodesmata in higher plants, Intercellular Communication in Plants: Studies on Plasmodesmata, Gunning, B.E.S., et al., Eds., Berlin: Springer-Verlag, 1976, pp. 15–58.

    Chapter  Google Scholar 

  26. Anderson, J.L. and Malone, D.M., Mechanism of osmotic flow in porous membranes, Biophys. J., 1974, vol. 14, pp. 957–982.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Gamalei, Yu.V., Plasmodesmata — intercellular connections in plants, Sov. Plant Physiol., 1985, vol. 32, pp. 176–190.

    Google Scholar 

  28. Martindale, V.E. and Salisbury, J.L., Phosphorylation of algal centrin is rapidly responsive to changes in the external milieu, J. Cell Sci., 1990, vol. 96, pp. 395–402.

    CAS  PubMed  Google Scholar 

  29. Wu, Y., Liu, X.F., Wang, W.F., Zhang, S.Q., and Xu, B.C., Calcium regulates the cell-to-cell water flow pathway in maize roots during variable water conditions, Plant Physiol. Biochem., 2012, vol. 58, pp. 212–219.

    Article  CAS  PubMed  Google Scholar 

  30. Holdaway-Clarke, T.L., Walker, N.A., Hepler, P.K., and Overall, R.L., Physiological elevations in cytoplasmic free calcium by cold or ion injection result in transient closure of higher plant plasmodesmata, Planta, 2000, vol. 210, pp. 329–335.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Anisimov.

Additional information

Original Russian Text © A.V. Anisimov, M.A. Suslov, A.Yu. Alyab’ev, 2014, published in Fiziologiya Rastenii, 2014, Vol. 61, No. 4, pp. 546–554.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anisimov, A.V., Suslov, M.A. & Alyab’ev, A.Y. Symplasmic transport of water along the root depends on pressure. Russ J Plant Physiol 61, 512–519 (2014). https://doi.org/10.1134/S1021443714040025

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443714040025

Keywords

Navigation