Skip to main content

Advertisement

Log in

Plant morphogenesis in vitro1

  • Reviews
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Plant cells in vitro manifest a wider morphogenetic potential then in Nature due to the evolutionary determined capability of vascular plants for regeneration. We reviewed investigations on morphogenesis induction by exogenous regulators and by genetic transformation with the rol genes. Integrity disturbance and asymmetry creation are the main conditions required for the induction of regeneration programs. In in vitro experiments, these conditions are attained by a damaging treatment, explant extradition, diverse physical factors, primarily by suboptimal temperature, changes in irradiance, and the addition of physiologically active compounds (hormones or antitubulin drugs) to nutrient medium. Different morphogenetic scenarios are possible in dependence on the combination of internal and external factors determining initial conditions. This causes difficulties in the control of in vitro morphogenesis. We suggest to describe morphogenesis in terms of the set theory, basing on the concept of biological referents. Formalization performed allowed a detection of basic differences in the initial developmental stages under in vivo and in vitro conditions and a comparison between morphogenesis control in plants and vertebrates. As a result of this comparison, the concept of two languages responsible for morphogenesis of multicellular organisms was formulated. The first language is related to the events of differentiation, which are determined by a specificity of chromatin structural gene transcription. This may be formally presented as a chain of successive genotype states, each of which is mapped onto the phenotype traits. The second language has no phenotypic expression; it is related to the rules of information reproducing and storage. In this context, information is considered as a basic DNA structure of the individual organism and specific chromatin state inactive in transcription. Formal diagrams of plant ontogeny are interpreted from the positions of molecular mechanisms of morphogenesis control. The scheme of the genotype states corresponding to various levels of differentiation is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eccleston, A., de Witt, N., Gunter, C., Marte, B., and Nath, D., Epigenetics, Nature, 2007, vol. 447, p. 395.

    Article  CAS  Google Scholar 

  2. Butenko, R.G., Kul’tura izolirovannykh tkanei i fiziologiya morfogeneza rastenii (Tissue Culture and Physiology of Plant Morphogenesis), Moscow: Nauka, 1964.

    Google Scholar 

  3. Zimmerman, J.L., Somatic Embryogenesis: A Model for Early Development in Higher Plants, Plant Cell, 1993, vol. 5, pp. 1411–1423.

    Article  PubMed  Google Scholar 

  4. D’yakov, Yu.T., Shnyreva, A.V., and Sergeev, A.Yu., Vvedenie v genetiku gribov (Introduction to the Genetics of Fungi), Moscow: Akademia, 2005.

    Google Scholar 

  5. Byrne, M.E., Kidner, C.A., and Martienssen, R.A., Plant Stem Cells: Divergent Pathways and Common Themes in Shoots and Roots, Curr. Opin. Gen. Dev., 2003, vol. 13, pp. 551–557.

    Article  CAS  Google Scholar 

  6. Zhou, H., Green Plant Regeneration from Anther Culture in Cereals, In Vitro Haploid Production in Higher Plants, Jain, S.M., Sopory, S.K., and Veilleux, R.E., Eds., Dordrecht: Kluwer, 1996, vol. 2, pp. 169–187.

    Google Scholar 

  7. Izawa, T., Ohnishi, T., Nakano, T., Ishida, N., Enoki, H., Hashimoto, H., Itoh, K., Terada, R., Wu, C., Miyazaki, C., Endo, T., Iida, S., and Shimamoto, K., Transposon Tagging in Rice, Plant Mol. Biol., 1997, vol. 35, pp. 219–229.

    Article  PubMed  CAS  Google Scholar 

  8. Kataeva, N.V. and Butenko, R.G., Klonal’noe mikrorazmnozhenie rastenii (Clonal Micropropagation of Plants), Moscow: Nauka, 1983.

    Google Scholar 

  9. Embriologiya tsvetkovykh rastenii: Terminologiya i kontseptsii (Embryology of Flower Plants: Terminology and Concepts), St. Petersburg: Mir i Sem’ya, 1997, vol. 2.

  10. Batygina, T.B., Bragina, E.A., Ereskovskii, A.V., and Ostrovskii, A.N., Zhivorozhdenie u rastenii i zhivotnykh: bespozvonochnykh i nizshikh khordovykh (Vivipary in Plants and Animals: Invertebrate and Lower Chordates), St. Petersburg: St. Petersburg Gos. Univ., 2006.

    Google Scholar 

  11. White, P.M., Doetzlhofer, A., Lee, Y.S., Groves, A.K., and Segil, N., Mammalian Cochlear Supporting Cells Can Divide and Trans-Differentiate into Hair Cells, Nature, 2006, vol. 441, pp. 984–987.

    Article  PubMed  CAS  Google Scholar 

  12. Costa, S. and Shaw, P., ’Open Minded’ Cells: How Cells Can Change Fate, Trends Cell Biol., 2007, vol. 17, pp. 101–106.

    Article  PubMed  CAS  Google Scholar 

  13. Werner, E., How Central Is Genome?, Science, 2007, vol. 317, pp. 753–754.

    Article  CAS  Google Scholar 

  14. Rodrigues, L.R., Oliveira, J.M.S., Mariath, J.E.A., and Bodanese-Zanettini, M.H., Histology of Embryogenic Responses in Soybean Anther Culture, Plant Cell, Tissue Organ Cult., 2005, vol. 80, pp. 129–137.

    Article  Google Scholar 

  15. Dos Santos, K.G.B., de Araujo, M.J.E., Moco, M.C.C., and Bodanese-Zanettini, M.H., Somatic Embryogenesis from Immature Cotyledons of Soybean (Glycine max (L.) Merr.: Ontogeny of Somatic Embryos, Braz. Arch. Biol. Technol., 2006, vol. 49, pp. 49–55.

    Google Scholar 

  16. Leyser, O., Auxin Distribution and Plant Pattern Formation: How Many Angels Can Dance on the Point of PIN? Cell, 2005, vol. 121, pp. 819–822.

    Article  PubMed  CAS  Google Scholar 

  17. Zhimulev, I.F., Molecular and Genetic Organization of Heterochromatin in Drosophila Chromosomes, Soros. Obr. Zh., 2000, no. 2, pp. 76–82.

  18. Alleman, M. and Doctor, J., Genomic Imprinting in Plants: Observations and Evolutionary Implications, Plant Mol. Biol., 2000, vol. 43, pp. 147–161.

    Article  PubMed  CAS  Google Scholar 

  19. Schier, A.F., The Maternal-Zygotic Transition: Death and Birth of RNAs, Science, 2007, vol. 316, pp. 406–407.

    Article  PubMed  CAS  Google Scholar 

  20. Kim, J.Y., Yuan, Z., Cilia, M., Khalfan-Jagani, Z., and Jackson D., Intercellular Trafficking of a KNOTTED1 Green Fluorescent Protein Fusion in the Leaf and Shoot Meristem of Arabidopsis, Proc. Natl. Acad. Sci. USA, 2002, vol. 99, pp. 4103–4108.

    Article  PubMed  CAS  Google Scholar 

  21. Cui, H., Levesque, M.P., Vernoux, T., Jung, J.W., Paquette, A.J., Gallagher, K.L., Wang, J.Y., Blilou, I., Scheres, B., and Benfey, P.N., An Evolutionarily Conserved Mechanism Delimiting SHR Movement Defines a Single Layer of Endodermis in Plants, Science, 2007, vol. 316, pp. 421–425.

    Article  PubMed  CAS  Google Scholar 

  22. McCullen, C.A. and Binns, A.N., Interactions between Agrobacterium tumefaciens and Plant Cells Required for Interkingdom Macromolecular Transfer, Annu. Rev. Cell Dev. Biol., 2006, vol. 22, pp. 101–127.

    Article  PubMed  CAS  Google Scholar 

  23. Wyrzykowska, J. and Fleming, A., Cell Division Pattern Influences Gene Expression in the Shoot Apical Meristem, Proc. Natl. Acad. Sci. USA, 2003, vol. 100, pp. 5561–5566.

    Article  PubMed  CAS  Google Scholar 

  24. Bernstein, E. and Allis, C.D., RNA Meets Chromatin, Gen. Dev., 2005, vol. 19, pp. 1635–1655.

    Article  CAS  Google Scholar 

  25. Wegel, E. and Shaw, P., Gene Activation and Deactivation Related Changes in the Three-Dimensional Structure of Chromatin, Chromosoma, 2005, vol. 114, pp. 331–337.

    Article  PubMed  Google Scholar 

  26. Vanyushin, B., DNA Methylation in Plants, DNA Methylation: Basic Mechanisms, Doerfler, W. and Bohm, P., Eds., Berlin: Springer-Verlag, 2006, pp. 67–122.

    Chapter  Google Scholar 

  27. Berger, Sh.L., The Complex Language of Chromatin Regulation during Transcription, Nature, 2007, vol. 447, pp. 407–412.

    Article  PubMed  CAS  Google Scholar 

  28. Dolan, L., Positional Information and Mobile Transcriptional Regulators Determine Cell Pattern in the Arabidopsis Root Epidermis, J. Exp. Bot., 2006, vol. 57, pp. 51–54.

    Article  PubMed  CAS  Google Scholar 

  29. Ueda, M., Koshino-Kimura, Y., and Okada, K., Stepwise Understanding of Root Development, Curr. Opin. Plant Biol., 2005, vol. 8, pp. 71–76.

    Article  PubMed  Google Scholar 

  30. Bartok, T. and Sagi, F., A New, Endosperm-Supported Callus Induction Method for Wheat (Triticum aestivum L.), Plant Cell, Tissue Organ Cult., 1990 vol. 22, pp. 37–41.

    Google Scholar 

  31. Nhut, D.T., Le, B.V., Minh, N.T., Teixeira de Silva, J., Fukai, S., Tanaka, M., and Van, K.T.T., Somatic Embryogenesis through Pseudo-Bulblet Transverse Thin Cell Layer of Lilium longiflorum, Plant Growth Regul., 2002, vol. 37, pp. 193–198.

    Article  CAS  Google Scholar 

  32. Reik, W., Stability and Flexibility of Epigenetic Gene Regulation in Mammalian Development, Nature, 2007, vol. 447, pp. 425–431.

    Article  PubMed  CAS  Google Scholar 

  33. Trotochaud, A.E., Jeong, S., and Clark, S.E., CLAVATA3, a Multimeric Ligand for the CLAVATA1 Receptor-Kinase, Science, 2000, vol. 289, pp. 613–617.

    Article  PubMed  CAS  Google Scholar 

  34. Fletcher, J.C., Shoot and Floral Meristem Maintenance in Arabidopsis, Annu. Rev. Plant Biol., 2002, vol. 53, pp. 45–66.

    Article  PubMed  CAS  Google Scholar 

  35. Takayama, S. and Sakagami, Y., Peptide Signalling in Plants, Curr. Opin. Plant Biol., 2002, vol. 5, pp. 382–387.

    Article  PubMed  CAS  Google Scholar 

  36. Endre, G., Kereszt, A., Kevei, Z., Mihacea, S., Kalo, P., and Kiss, G.B., A Receptor Kinase Gene Regulating Symbiotic Nodule Development, Nature, 2002, vol. 417, pp. 959–962.

    Article  CAS  Google Scholar 

  37. Searle, I.R., Men, A.E., Laniya, T.S., Buzas, D.M., Iturbe-Ormaetxe, I., Carroll, B.J., and Gresshoff, P.M., Long-Distance Signaling in Nodulation Directed by a CLAVATA1-Like Receptor Kinase, Science, 2003, vol. 299, pp. 109–112.

    Article  PubMed  CAS  Google Scholar 

  38. Guitton, A.-E. and Berger, F., Control of Reproduction by Polycomb Group Complexes in Animals and Plants, Int. J. Dev. Biol., 2005, vol. 49, pp. 707–716.

    Article  PubMed  CAS  Google Scholar 

  39. Biradar, D.P. and Rayburn, A.L., Flow Cytometric Probing of Chromatin Condensation in Maize Diploid Nuclei, New Phytol., 1994, vol. 126, pp. 31–35.

    Article  CAS  Google Scholar 

  40. Nakajima, K. and Benfey, Ph.N., Signaling In and Out: Control of Cell Division and Differentiation in the Shoot and Root, Plant Cell, 2002, vol. 14, pp. S265–S276.

    PubMed  CAS  Google Scholar 

  41. Tannenbaum, E., Sherley, J.L., and Shakhnovich, E.I., Evolutionary Dynamics of Adult Stem Cells: Comparson of Random and Immortal-Strand Segregation Mechanisms — Master Genome, Phys. Rev. E, 2005, vol. 71, no. 041914.

  42. Avetisov, V.A. and Zhuravlev, Yu.N., An Evolutionary Interpretation of the p-Adic Ultrametric Diffusion Equation, Dokl. Akad. Nauk, 2007, vol. 414, pp. 309–312.

    Google Scholar 

  43. Zhuravlev, Yu.N. and Avetisov, A.A., Hierarchical Scale-Free Representation of Biological Realm — Its Origin and Evolution, Biosphere Origin and Evolution, Dobretsov, N., Kolchanov, N., Rozanov, A., and Zavarzin, G., Eds., Berlin: Springer-Verlag, 2008, pp. 69–88.

    Google Scholar 

  44. Imhof, A., Epigenetic Regulators and Histone Modification, Brief. Funct. Genom. Proteom., 2006, vol. 5, pp. 222–227.

    Article  CAS  Google Scholar 

  45. Zhimulev, I.F., Obshchaya i molekulyarnaya genetika (General and Molecular Genetics), Novosibirsk: Sib. Gos. Univ., 2006.

    Google Scholar 

  46. Henderson, I.R. and Jacobsen, S.E., Epigenetic Inheritance in Plants, Nature, 2007, vol. 447, pp. 418–424.

    Article  PubMed  CAS  Google Scholar 

  47. Rosen, R., Life Itself, New York: Columbia Univ. Press, 1991.

    Google Scholar 

  48. Weinstock, M., ENCODE: More Genomic Empowerment, Genome Res., 2007, vol. 17, pp. 667–668.

    Article  PubMed  CAS  Google Scholar 

  49. Grewal, S.I.S. and Elgin, S.C.R., Transcription and RNA. Interference in the Formation of Heterochromatin, Nature, 2007, vol. 447, pp. 399–406.

    Article  PubMed  CAS  Google Scholar 

  50. Prusinkiewicz, P., Hanan, J., and Mech, R., An L-System-Based Plant Modeling Language, LNCS, 2000, vol. 1779, pp. 395–410.

    Google Scholar 

  51. Bunge, M., Philosophy of Physics, Dordrecht: Reidel, 1973.

    Google Scholar 

  52. Brink, R.A., Paramutation at the R Locus in Maize, Cold Spring Harbor Symp. Quant. Biol., 1958, vol. 23, pp. 379–391.

    CAS  Google Scholar 

  53. Wolfe, A.P. and Matzke, M.A., Epigenetics: Regulation through Repression, Science, 1999, vol. 286, pp. 481–486.

    Article  Google Scholar 

  54. Gingeras, T.R., Origin of Phenotypes: Genes and Transcripts, Genome Res., 2007, vol. 17, pp. 682–690.

    Article  PubMed  CAS  Google Scholar 

  55. Dominguez-Sola, D., Ying, C.Y., Grandori, C., Ruggiero, L., Chen, B., Li, M., Galloway, D.A., Gu, W., Gautier, J., and Dalla-Favera, R., Non-Transcriptional Control of DNA Replication by c-Myc, Nature, 2007, vol. 448, pp. 445–453.

    Article  PubMed  CAS  Google Scholar 

  56. Levine, M. and Davidson, E.H., Gene Regulatory Networks for Development, Proc. Natl. Acad. Sci. USA, 2005, vol. 102, pp. 4936–4942.

    Article  PubMed  CAS  Google Scholar 

  57. Bantignies, F. and Cavalli, G., Cellular Memory and Dynamic Regulation of Polycomb Group Proteins, Curr. Opin. Plant Biol., 2006, vol. 18, pp. 275–283.

    CAS  Google Scholar 

  58. Fraser, P. and Bickmore, W., Nuclear Organization of the Genome and the Potential for Gene Regulation, Nature, 2007, vol. 447, pp. 413–417.

    Article  PubMed  CAS  Google Scholar 

  59. Bartel, D.P., MicroRNAs: Genomics, Biogenesis, Mechanism, and Function, Cell, 2004, vol. 116, pp. 281–297.

    Article  PubMed  CAS  Google Scholar 

  60. Sieber, P., Wellmer, F., Gheyselinck, J., Riechmann, J.L., and Meyerowitz, E.M., Redundancy and Specialization among Plant MicroRNAs: Role of the MIR164 Family in Developmental Robustness, Development, 2007, vol. 134, pp. 1051–1060.

    Article  PubMed  CAS  Google Scholar 

  61. Valencia-Sanchez, M.A., Liu, J., Hannon, G.J., and Parker, R., Control of Translation and mRNA Degradation by miRNAs and siRNAs, Gen. Dev., 2006, vol. 20, pp. 515–524.

    Article  CAS  Google Scholar 

  62. Lim, L.P., Lau, N.C., Garrett-Engele, P., Grimson, A., Schelter, J.M., Castle, J., Bartel, D.P., Linsley, P.S., and Johnson, J.M., Microarray Analysis Shows that Some microRNAs Downregulate Large Numbers of Target mRNAs, Nature, 2005, vol. 433, pp. 769–773.

    Article  PubMed  CAS  Google Scholar 

  63. Farh, K.K., Grimson, A., Jan, C., Lewis, B.P., Johnston, W.K., Lim, L.P., Burge, C.B., and Bartel, D.P., The Widespread Impact of Mammalian microRNAs on mRNA Repression and Evolution, Science, 2005, vol. 310, pp. 1817–1821.

    Article  PubMed  CAS  Google Scholar 

  64. Stark, A., Brennecke, J., Bushati, N., Russell, R.B., and Cohen, S.M., Animal microRNAs Confer Robustness to Gene Expression and Have a Significant Impact on 3-UTR Evolution, Cell, 2005, vol. 123, pp. 1133–1146.

    Article  PubMed  CAS  Google Scholar 

  65. Vaucheret, H., Post-Transcriptional Small RNA Pathways in Plants: Mechanisms and Regulations, Gen. Dev., 2006, vol. 20, pp. 759–771.

    Article  CAS  Google Scholar 

  66. Llave, C., Xie, Z.X., Kasschau, K.D., and Carrington, J.C., Cleavage of SCARECROW-Like mRNA Targets Directed by a Class of Arabidopsis miRNA, Science, 2002, vol. 297, pp. 2053–2056.

    Article  PubMed  CAS  Google Scholar 

  67. Baulcombe, D., RNA Silencing in Plants, Nature, 2004, vol. 431, pp. 356–363.

    Article  PubMed  CAS  Google Scholar 

  68. Schwab, R., Palatnik, J.F., Riester, M., Schommer, C., Schmid, M., and Weigel, D., Specific Effects of microRNAs on the Plant Transcriptome, Dev. Cell, 2005, vol. 8, pp. 517–527.

    Article  PubMed  CAS  Google Scholar 

  69. Chen, X., MicroRNA Biogenesis and Function in Plants, FEBS Lett., 2005, vol. 579, pp. 5923–5931.

    Article  PubMed  CAS  Google Scholar 

  70. Mallory, A.C., Dugas, D.V., Bartel, D.P., and Bartel, B., MicroRNA Regulation of NAC-Domain Targets Is Required for Proper Formation and Separation of Adjacent Embryonic, Vegetative, and Floral Organs, Curr. Biol., 2004, vol. 14, pp. 1035–1046.

    Article  PubMed  CAS  Google Scholar 

  71. Mattick, J.S., A New Paradigm for Developmental Biology, J. Exp. Biol., 2007, vol. 210, pp. 1526–1547.

    Article  PubMed  Google Scholar 

  72. Chendrimada, T.P., Finn, K.J., Ji, X., Baillat, D., Gregory, R.I., Liebhaber, S.A., Pasquinelli, A.E., and Shiekhattar, R., MicroRNA Silencing through RISC Recruitment of eIF6, Nature, 2007, vol. 447, pp. 823–828.

    Article  PubMed  CAS  Google Scholar 

  73. Shen, X., Xiao, H., Ranallo, R., Wu, W.-H., and Wu, C., Modulation of ATP-Dependent Chromatin-Remodeling Complexes by Inositol Polyphosphates, Science, 2003, vol. 299, pp. 112–114.

    Article  PubMed  CAS  Google Scholar 

  74. Izawa, T., Ohnishi, T., Toshitsugu, Nakano, T., Ishida, N., Enoki, H., Kepinski, S., and Leyser, O., Ubiquitination and Auxin Signaling: A Degrading Story, Plant Cell, 2002, vol. 14, pp. S81–S95.

    Google Scholar 

  75. Glotzer, M., Murray, A.W., and Kirschner, M.W., Cyclin Is Degraded by the Ubiquitin Pathway, Nature, 1991, vol. 349, pp. 132–138.

    Article  PubMed  CAS  Google Scholar 

  76. Prescott, D.M., Genome Gymnastics: Unique Modes of DNA Evolution and Processing in Ciliates, Nature Rev. Genet., 2000, vol. 1, pp. 191–198.

    Article  CAS  PubMed  Google Scholar 

  77. Juranek, S.A., Rupprecht, S., Postberg, J., and Lipps, H.J., snRNA and Heterochromatin Formation Are Involved in DNA Excision during Macronuclear Development in Stichotrichous ciliates, Eukaryot. Cell, 2005, vol. 4, pp. 1934–1941.

    Article  PubMed  CAS  Google Scholar 

  78. Paz, A., Kirzhner, V., Nevo, E., and Korol, A., Coevolution of DNA-Interacting Proteins and Genome “Dialect”, Mol. Biol. Evol., 2006, vol. 23, pp. 56–64.

    Article  PubMed  CAS  Google Scholar 

  79. Jacobs, T., Cell Cycle Control, Annu. Rev. Plant Physiol. Plant Mol. Biol., 1995, vol. 46, pp. 317–339.

    Article  CAS  Google Scholar 

  80. Zhou, Y., Wang, H., Gilmer, S., Whitwill, S., and Fowke, L.C., Effects of Co-Expressing the Plant CDK Inhibitor ICK1 and D-Type Cyclin Genes on Plant Growth, Cell Size and Ploidy in Arabidopsis thaliana, Planta, 2003, vol. 216, pp. 604–613.

    PubMed  CAS  Google Scholar 

  81. Salozhin, S.V., Prokhorchuk, E.B., and Georgiev, G.P., DNA Methylation as One of the Main Epigenetic Markers, Biokhimiya, 2005, vol. 70, pp. 641–650.

    Google Scholar 

  82. Guo, J., Song, J., Wang, F., and Zhang, X., Genome-Wide Identification and Expression Analysis of Rice Cell Cycle Genes, Plant Mol. Biol., 2007, vol. 64, pp. 349–360.

    Article  PubMed  CAS  Google Scholar 

  83. Vandepoele, K., Raes, J., de Veylder, L., Rouze, P., Rombauts, S., and Inze, D., Genome-Wide Analysis of Core Cell Cycle Genes in Arabidopsis, Plant Cell, 2002, vol. 14, pp. 903–916.

    Article  PubMed  CAS  Google Scholar 

  84. Menges, M., de Jager, S.M., Gruissem, W., and Murray, J.A., Global Analysis of the Core Cell Cycle Regulators of Arabidopsis Identifies Novel Genes, Reveals Multiple and Highly Specific Profiles of Expression and Provides a Coherent Model for Plant Cell Cycle Control, Plant J., 2005, vol. 41, pp. 546–566.

    Article  PubMed  CAS  Google Scholar 

  85. Sherr, C.J., The Pezcoller Lecture: Cancer Cell Cycles Revisited, Cancer Res., 2000, vol. 60, pp. 3689–3695.

    PubMed  CAS  Google Scholar 

  86. Nishitani, H. and Lygerou, Z., Control of DNA Replication Licensing in a Cell Cycle, Genes Cells, 2002, vol. 7, pp. 523–534.

    Article  PubMed  CAS  Google Scholar 

  87. Matsson, L., Model of DNA Dynamics and Replication, J. Biol. Phys., 2005, vol. 31, pp. 303–321.

    Article  CAS  Google Scholar 

  88. Van Oijen, A.M., Single-Molecule Studies of Complex Systems: The Replisome, Mol. Biosyst., 2007, vol. 3, pp. 117–125.

    Article  PubMed  CAS  Google Scholar 

  89. Lynch, M. and Katju, V., The Altered Evolutionary Trajectories of Gene Duplicates, Trends Genet., 2004, vol. 20, pp. 544–549.

    Article  PubMed  CAS  Google Scholar 

  90. McGrath, J. and Solter, D., Inability of Mouse Blastomere Nuclei Transferred to Enucleated Zygotes to Support Development In Vitro, Science, 1984, vol. 226, pp. 1317–1319.

    Article  PubMed  CAS  Google Scholar 

  91. Egli, D., Rosains, J., Birkhoff, G., and Eggan, K., Developmental Reprogramming after Chromosome Transfer into Mitotic Mouse Zygotes, Nature, 2007, vol. 447, pp. 679–686.

    Article  PubMed  CAS  Google Scholar 

  92. Takahashi, K. and Yamanaka, S., Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors, Cell, 2006, vol. 126, pp. 663–676.

    Article  PubMed  CAS  Google Scholar 

  93. Wernig, M., Meissner, A., Foreman, R., Brambrink, T., Ku, M., Hochedlinger, K., Bernstein, B.E., and Jaenisch, R., In Vitro Reprogramming of Fibroblasts into a Pluripotent ES-Cell-Like State, Nature, 2007, vol. 448, pp. 318–324.

    Article  PubMed  CAS  Google Scholar 

  94. Cabrera-Ponce, J.L., Vegas-Garcia, A., and Herrera-Estrella, L., Regeneration of Transgenic Papaya Plants via Somatic Embryogenesis Induced by Agrobacterium rhizogenes, In Vitro Cell Dev. Biol. Plant., 1996, vol. 32, pp. 86–90.

    Article  Google Scholar 

  95. Gorpenchenko, T.Y., Kiselev, K.V., Bulgakov, V.P., Tchernoded, G.K., Bragina, E.A., Khodakovskaya, M.V., Koren, O.G., Batygina, T.B., and Zhuravlev, Yu.N., The Agrobacterium rhizogenes rol C-Gene-Induced Somatic Embryogenesis and Shoot Organogenesis in Panax ginseng Transformed Calluses, Planta, 2006, vol. 223, pp. 457–467.

    Article  PubMed  CAS  Google Scholar 

  96. Zeller, K.I., Jegga, A.G., Aronow, B.J., O’Donnell, K.A., and Dang, C.V., An Integrated Database of Genes Responsive to the Myc Oncogenic Transcription Factor: Identification of Direct Genomic Targets, Genome Biol., 2003, vol. 4, p. R69.

    Article  PubMed  Google Scholar 

  97. Palsson, B.O., Systems Biology: Properties of Reconstructed Networks, Cambridge: Cambridge Univ. Press, 2006.

    Google Scholar 

  98. Riechmann, J.L., Heard, J., Martin, G., Reuber, L., Jiang, C., Keddie, J., Adam, L., Pineda, O., Ratcliffe, O.J., Samaha, R.R., Creelman, R., Pilgman, M., Broun, P., Zhang, J.Z., Ghandehari, D., Sherman, B.K., and Yu, G.-L., Arabidopsis Transcription Factors: Genomewide Comparative Analysis among Eukaryotes, Science, 2000, vol. 290, pp. 2105–2110.

    Article  PubMed  CAS  Google Scholar 

  99. Ingram, G.C., Between the Sheets: Inter-Cell-Layer Communication in Plant Development, Phil. Trans. R. Soc. Lond., B, 2004, vol. 359, pp. 891–906.

    Article  CAS  Google Scholar 

  100. Kuznetsov, Vl.V. and Kulikov, A.M., Genetic Modified Organisms and Their Products: Real and Potential Risks, Ros. Khim. Zh., 2005, vol. 49, pp. 70–83.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. N. Zhuravlev.

Additional information

Original Russian Text © Yu.N. Zhuravlev, A.M. Omelko, 2008, published in Fiziologiya Rastenii, 2008, Vol. 55, No. 5, pp. 643–664.

This paper used the materials reported by Yu. N. Zhuravlev on VI Congress of All-Russia Society of Plant Physiologists, June 19, 2007, Syktyvkar.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhuravlev, Y.N., Omelko, A.M. Plant morphogenesis in vitro1 . Russ J Plant Physiol 55, 579–596 (2008). https://doi.org/10.1134/S1021443708050014

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443708050014

Key words

Navigation