Skip to main content
Log in

Powerful Lasers for High Energy Density Physics

  • Scientific Session of the General Meeting of RAS Members “75 Years of the Nuclear Industry: the Contribution of the Academy of Sciences”
  • Published:
Herald of the Russian Academy of Sciences Aims and scope Submit manuscript

Abstract

This paper deals with the principal results of studies performed by scientists of academic institutes and nuclear industry enterprises in the field of laser physics and high energy density physics. Some projects of creating an advanced experimental laser base are presented, and the directions of works to be done are listed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. C. H. Townes, A Century of Nature: Twenty-One Discoveries that Changed Science and the World (Univ. of Chicago Press, Chicago, 2003).

    Google Scholar 

  2. V. S. Zuev, Photodissociation Laser Pumped by Shock and Heat Waves (FIAN, Moscow, 1990) [in Russian].

    Google Scholar 

  3. E. I. Moses and C. R. Wuest, “The national ignition facility: Laser performance and first experiments,” Fusion Sci. Technol. 47 (3), 314–322 (2005).

    Article  CAS  Google Scholar 

  4. S. B. Kormer, G. G. Kochemasov, S. M. Kulikov, et al., “Application of nonlinear processes for the formation of subnanosecond high-contrast laser pulses,” Zh. Eksp. Teor. Fiz. 82 (4), 1079–1091 (1982).

    CAS  Google Scholar 

  5. V. P. Borisov, V. V. Burtsev, S. D. Velikanov, et al., “Pulsed chemical laser with reaction initiation by powerful light sources,” Kvant. Elektron. 23 (4), 323–325 (1996).

    CAS  Google Scholar 

  6. G. A. Kirillov, Laser Physics Manual (Izd. RFYaTs–VNIIEF, Sarov, 2016) [in Russian].

  7. A. A. Adamenkov, V. V. Bakshin, A. V. Bogachev, et al., “Test bench for studying the outlook for industrial applications of an oxygen–iodine laser,” Quantum Electron. 37 (7), 601–602 (2007).

    Article  CAS  Google Scholar 

  8. N. A. Popov, “ADS and LTS,” Vopr. At. Nauk. Tekhn., Ser. Mat. Model. Fiz. Prots., No. 4, 53–54 (1992).

  9. N. G. Basov and O. N. Krokhin, “Plasma heating conditions by the radiation of an optical generator,” Zh. Eksp. Teor. Fiz. 46 (1), 171–175 (1964).

    CAS  Google Scholar 

  10. J. Nuckols, L. Wood, A. Thiessen, and G. Zimmerman, “Laser compression of matter to super-high densities: Thermonuclear (CTR) applications,” Nature 239, 139–142 (1972).

    Article  Google Scholar 

  11. N. G. Basov, A. E. Danilov, B. V. Kruglov, et al., “Launch of the Dolphin-1 laser thermonuclear installation,” Kvant. Elektron. 9 (2), 395–398 (1982).

    CAS  Google Scholar 

  12. N. G. Basov, O. N. Krokhin, and G. V. Sklizkov, “Powerful laser setup and study of the efficiency of high-temperature plasma heating,” Zh. Eksp. Teor. Fiz. 62 (1), 203–212 (1972).

    CAS  Google Scholar 

  13. K. P. Aver’yanov, Yu. S. Avilov, V. V. Aleksandrov, et al., “UMI-35 laser device for the researches in the controlled thermonuclear fusion,” in Proceedings of the XII ECLIM (Moscow, 1978), p. 20.

  14. S. B. Kormer, “Photodissociation lasers for controlled thermonuclear fusion,” Izv. Akad. Nauk. SSSR, Ser. Fiz. 44 (10), 2002–2017 (1980).

    CAS  Google Scholar 

  15. V. I. Annenkov, V. A. Bagretsov, V. G. Bezuglov, et al., “Iskra-5 pulsed laser with a power of 120 TW,” Kvant. Elektron. 18 (5), 536–537 (1991).

    CAS  Google Scholar 

  16. A. A. Andreev, M. G. Anuchin, B. G. Borodin, et al., “Results of LTS experiments at the Progress facility and their interpretation,” Zh. Eksp. Teor. Fiz. 95 (2), 528–535 (1989).

    CAS  Google Scholar 

  17. V. V. Volenko, A. I. Zuev, A. F. Ivanov, et al., “X-ray images of gas-filled glass microspheres irradiated with the Sokol laser facility,” Kvant. Elektron. 10 (11), 2350–2352 (1983).

    Google Scholar 

  18. “Initial target experiments on the upgraded OMEGA laser system,” LLE Review 64, 145–154 (1996).

  19. F. J. Marshall, J. A. Delettrez, R. Epstein, et al., “Direct-drive high-convergence-ratio implosion studies on the OMEGA laser system,” Phys. Plasmas 7 (5), 2108–2113 (2000).

    Article  CAS  Google Scholar 

  20. M. D. Cable, S. P. Hatchett, J. A. Caird, et al., “Indirectly driven, high convergence inertial confinement fusion implosions,” Phys. Rev. Lett. 43, 2316–2319 (1994).

    Article  Google Scholar 

  21. G. G. Kochemasov, “Laser interaction with matter,” in Proceedings of the XXIII ECLIM (1994), p. 17.

  22. V. P. Silin, “Absorption of radiation by turbulent laser plasmas,” Sov. Phys. Usp. 28 (2), 136–152 (1985).

    Article  Google Scholar 

  23. E. M. Campbell, J. T. Hant, E. S. Bliss, et al., “Nova experimental facility,” Rev. Sci. Instr. 57, 2101–2106 (1986).

    Article  CAS  Google Scholar 

  24. F. M. Abzaev, S. A. Bel’kov, A. V. Bessarab, et al., “Compression and heating of spherical thermonuclear targets under indirect (X-ray) irradiation at the Iskra-5 facility,” Zh. Eksp. Teor. Fiz. 114 (1), 155–170 (1998).

    CAS  Google Scholar 

  25. R. I. Il’kaev and V. E. Fortov, “The application of lasers to study extreme states of matter,” Herald Russ. Acad. Sci. 81 (3), 218–222 (2011).

    Article  Google Scholar 

  26. S. A. Bel’kov, A. V. Bessarab, V. A. Gaigash, et al., “Study of the shell’s large-scale asymmetry influence on the target dynamics using the ISKRA-5 facility,” Laser Part. Beams 17 (3), 385–390 (1999).

    Article  Google Scholar 

  27. I. D. Sofronov, S. A. Bel’kov, O. A. Vinokurov, et al., “Method for calculating the spectral radiation transfer in the two-dimensional complex MIMOZA-ND,” Vopr. At. Nauk. Tekhn., Ser. Mat. Model. Fiz. Prots., No. 1, 8–15 (2000).

  28. J. Ebrardt and J. M. Chaput, “LMJ project status,” J. Phys.: Conf. Ser. 112 (3), 032005 (2008).

    Google Scholar 

  29. I. V. Galakhov, S. G. Garanin, V. A. Eroshenko, et al., “Concept of the Iskra-6 Nd-laser facility,” Fusion Eng. Des. 44, 51–56 (1999).

    Article  Google Scholar 

  30. S. G. Garanin, A. I. Zaretskii, R. I. Il’kaev, et al., “Channel of the powerful Luch facility for LTS with a pulse energy of 3.3 kJ and a duration of 4 ns,” Kvant. Elektron. 35 (4), 299–301 (2005).

    Article  CAS  Google Scholar 

  31. S. A. Bel’kov, V. N. Derkach, S. G. Garanin, et al., “Isentropic expansion of copper plasma in Mbar pressure range at ‘Luch’ laser facility,” J. Appl. Phys. 115 (3), 033506-1–033506-7 (2014).

    Google Scholar 

  32. E. Yu. Aristova, A. A. Aushev, V. K. Baranov, et al., “Laser simulations of the destructive impact of nuclear explosions on hazardous asteroids,” J. Exp. Theor. Phys. 126 (1), 132–145 (2018).

    Article  CAS  Google Scholar 

  33. P. M. Celliers, D. K. Bradley, G. W. Collins, and D. G. Hicks, “Line-imaging velocimeter for shock diagnostics at the OMEGA laser facility,” Rev. Sci. Instr. 75 (11), 4916–4929 (2004).

    Article  CAS  Google Scholar 

  34. O. Strand, D. Goosman, C. Martinez, et al., “Compact system for high-speed velocimetry using heterodyne techniques,” Rev. Sci. Instr. 77 (8), 083108-1–083108-8 (2006).

    Article  Google Scholar 

  35. C. Danson, D. Hiller, N. Hopps, and D. Neely, “Petawatt class lasers worldwide,” High Power Laser Sci. Eng. 3 (3), 1–14 (2015).

    Article  CAS  Google Scholar 

  36. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 56 (3), 219–221 (1985).

    Article  Google Scholar 

  37. A. S. Zuev, V. N. Ginzburg, A. A. Kochetkov, et al., “Offner stretcher for the PEARL laser facility,” Quantum Electron. 47 (8), 705–710 (2017).

    Article  CAS  Google Scholar 

  38. V. V. Lozhkarev, G. I. Freidman, V. N. Ginzburg, et al., “Compact 0.56 Petawatt laser system based on optical parametric chirped pulse amplification in KD*P crystals,” Laser Phys. Lett. 4 (6), 421–427 (2007).

    Article  CAS  Google Scholar 

  39. E. A. Khazanov, S. Yu. Mironov, and G. Mourou, “Nonlinear compression of high-power laser pulses: Compression after compressor approach,” Phys. Usp. 62 (11), 1096–1124 (2019).

    Article  CAS  Google Scholar 

  40. V. N. Ginzburg, I. V. Yakovlev, A. S. Zuev, et al., “Two-stage nonlinear compression of high-power femtosecond laser pulses,” Quantum Electron. 50 (4), 331–334 (2020).

    Article  CAS  Google Scholar 

  41. B. Khiar, G. Revet, A. Ciardi, et al., “Laser-produced magnetic-Rayleigh-Taylor unstable plasma slabs in a 20 T magnetic field,” Phys. Rev. Lett. 123, 205001-1–205001-6 (2019).

    Article  Google Scholar 

  42. E. Moses, D. Rubia, J. F. Latkowski, et al., “A sustainable nuclear fuel cycle based on Laser Inertial Fusion Energy (LIFE),” Fusion Sci. Technol. 56 (2), 566–572 (2009).

    Article  Google Scholar 

  43. S. Banerjee, P. D. Mason, K. Ertel, et al., “100 J-level nanosecond pulsed diode pumped solid state laser,” Opt. Lett. 41 (9), 2089—2092 (2016).

    Article  CAS  Google Scholar 

  44. S. A. Bel’kov, I. N. Voronich, S. G. Garanin, et al., “Laser facility on Nd glass with limiting characteristics in terms of radiation concentration for investigations of extreme states of matter and in the interests of LTS,” in International Conference “XIII Zababakhin Scientific Reading” (2017) [in Russian].

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. G. Garanin, S. V. Garnov, A. M. Sergeev or E. A. Khazanov.

Additional information

Translated by E. Glushachenkova

RAS Academician Sergei Grigor’evich Garanin is General Designer for Laser Systems, Deputy Director of the Russian Federal Nuclear Center All-Russia Scientific Research Institute of Experimental Physics, and Director of the Institute of Laser Physics Studies. RAS Corresponding Member Sergei Vladimirovich Garnov is Director of the Federal Research Center Prokhorov General Physics Institute, RAS. RAS Academician Aleksandr Mikhailovich Sergeev is RAS President and Chief Researcher at the Federal Research Center Institute of Applied Physic, RAS. RAS Academician Efim Arkad’evich Khazanov is Deputy Director for Research and Head of the Department of Nonlinear Dynamics and Optics at the Federal Research Center Institute of Applied Physics, RAS.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garanin, S.G., Garnov, S.V., Sergeev, A.M. et al. Powerful Lasers for High Energy Density Physics. Her. Russ. Acad. Sci. 91, 250–260 (2021). https://doi.org/10.1134/S1019331621030060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1019331621030060

Keywords:

Navigation