Skip to main content
Log in

Specific Features of Soil Formation in Alas Landscapes of the Cryolithozone

  • From the Researcher’s Notebook
  • Published:
Herald of the Russian Academy of Sciences Aims and scope Submit manuscript

Abstract

Thermokarst elements of topography—alases—are widely spread in areas of permafrost rocks and are represented by depressions of various sizes and shapes on the surface of plains. It has been found that their formation is related to degradation of the ice complex and subsidence and subsequent redeposition of the surrounding rocks. Complex polycyclic soil-forming rocks consisting of layers of mineral and organic lacustrine-boggy deposits are formed in thermokarst depressions. This long-term process is related to the rhythmic functioning of unique intrazonal landscapes. Alases occur in different natural zones (forest–steppe, boreal forests, tundra), as well as in river valleys, in the mountains, or on plateaus. The genesis, structure, and functioning of alases are not comprehensively studied and require the attention of researchers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. G. Hugelius, J. Strauss, S. Zubrzycki, et al., “Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps,” Biogeosciences 11, 6573–6593 (2014).

    Article  Google Scholar 

  2. N. N. Romanovskii, Basics of Cryogenesis of the Lithosphere, Ed. by O. M. Lisitsyna (Izd. MGU, Moscow, 1993) [in Russian].

    Google Scholar 

  3. R. F. Black, “Thaw depressions and thaw lakes, a review,” Biul. Peryglacjalny 19, 131–150 (1969).

    Google Scholar 

  4. T. L. Pewe and A. Journaux, “Origin and character of loesslike silt in unglaciated South-Central Yakutiya, Siberia, USSR,” Geological Survey Professional Paper No. 1262 (US GPO, Washington, 1983).

    Google Scholar 

  5. B. I. Vtyurin, Underground Ice of the USSR (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  6. M. N. Grigor’ev, Yu. B. Skachkov, A. N. Fedorov, et al., Overview of Recent Changes in the Climate and Environment of the Republic of Sakha (Yakutiya) (Izd. Khameleon, Yakutsk, 2010) [in Russian].

    Google Scholar 

  7. V. V. Kunitskii, Cryolithology of the Lower Lena (Inst. Merzlotovedeniya SO AN SSSR, Yakutsk, 1989).

    Google Scholar 

  8. The Structure and Absolute Geochronology of Alas Deposits in Central Yakutia, Ed. by E. M. Katasonov (Nauka, Novosibirsk, 1979) [in Russian].

    Google Scholar 

  9. L. Agafonov, H. Strunk, and T. Nuber, “Thermokarst dynamics in Western Siberia: Insights from dendrochronological research,” Palaeogeogr., Palaeoclimatol., Palaeoecol. 209 (1–4), 183–196 (2004).

    Article  Google Scholar 

  10. C. D. Arp, B. M. Jones, F. E. Urban, and G. Grosse, “Hydrogeomorphic processes of thermokarst lakes with grounded-ice and floating-ice regimes on the Arctic Coastal Plain, Alaska,” Hydrological Processes 25 (15), 2422–2438 (2011).

    Article  Google Scholar 

  11. A. W. Balser, M. N. Gooseff, J. B. Jones, and W. B. Bow-den, Thermokarst distribution and relationships to landscape characteristics in the Feniak Lake region, Noatak National Preserve, Alaska. https://www.uvm.edu/bwrl/arcn/docs/2009_Balser_etal_Feniak_thermokarst.pdf.

  12. W. B. Bowden, “Climate change in the Arctic—Permafrost, thermokarst, and why they matter to the non-Arctic world,” Geogr. Compass 4 (10), 1553–1566 (2010).

    Article  Google Scholar 

  13. C. R. Burn, “Thermokarst lakes,” Canadian Geographer 36 (1), 81–85 (1992).

    Article  Google Scholar 

  14. C. R. Burn and M. W. Smith, “Development of thermokarst lakes during the Holocene at sites near Mayo, Yukon Territory,” Permafrost Periglacial Processes 1 (2), 161–175 (2006).

    Article  Google Scholar 

  15. G. Grosse, L. Schirrmeister, and T. J. Malthus, “Application of Landsat-7 satellite data and a DEM for the quantification of thermokarst-affected terrain types in the periglacial Lena–Anabar coastal lowland,” Polar Res. 25 (1), 51–67 (2006).

    Google Scholar 

  16. B. M. Jones, G. Grosse, C. D. Arp, et al., “Modern thermokarst lake dynamics in the continuous permafrost zone, Northern Seward Peninsula, Alaska,” J. Geophys. Res.: Biogeosci. 116 (G2), G00M03 (2011).

    Google Scholar 

  17. M. T. Jorgenson, Y. L. Shur, and E. R. Pullman, “Abrupt increase in permafrost degradation in Arctic Alaska,” Geophys. Res. Lett. 33 (2), L02503 (2006).

    Article  Google Scholar 

  18. S. V. Kokelj and M. T. Jorgenson, “Advances in thermokarst research,” Permafrost Periglacial Processes 24, 108–119 (2013).

    Article  Google Scholar 

  19. Z. Lin, F. Niu, Z. Xu, et al., “Thermal regime of a thermokarst lake and its influence on permafrost, Beiluhe Basin, Qinghai-Tibet Plateau,” Permafrost Periglacial Processes 21 (4), 315–324 (2010).

    Article  Google Scholar 

  20. T. E. Osterkamp, M. T. Jorgenson, E. A. G. Schuur, et al., “Physical and ecological changes associated with warming permafrost and thermokarst in interior Alaska,” Permafrost Periglacial Processes 20, 235–256 (2009).

    Article  Google Scholar 

  21. H. Saito, Y. Iijima, N. I. Basharin, et al., “Thermokarst development detected from high-definition topographic data in Central Yakutia,” Remote Sensing 10 (10), 1579 (2018).

    Article  Google Scholar 

  22. P. A. Solov’ev, The Cryolithozone of the Northern Part of the Lena–Amga Interfluve (Izd. AN SSSR, Moscow, 1959) [in Russian].

    Google Scholar 

  23. T. N. Kaplina, “Alas complexes of Northern Yakutia,” Kriosfera Zemli 13 (4), 3–17 (2009).

    Google Scholar 

  24. N. A. Shilo and S. V. Tomirdiaro, “Lake thermokarst and periglacial continental lithogenesis on planes of the northeastern USSR,” Kolyma, No. 7, 35–39 (1970).

    Google Scholar 

  25. R. V. Desyatkin, “Soil formation in alases,” Eurasian Soil Sci. 23 (4), 9–19 (1991).

    Google Scholar 

  26. R. V. Desyatkin, Soil Formation in Thermokarst Troughs—Cryozone Alases (Nauka, Novosibirsk, 2008) [in Russian].

    Google Scholar 

  27. W. B. Bowden, M. N. Gooseff, A. Balser, et al., “Sediment and nutrient delivery from thermokarst features in the foothills of the North Slope, Alaska—Potential impacts on headwater stream ecosystems,” J. Geophys. Res. 113, G02026 (2010).

    Google Scholar 

  28. S. V. Kokelj, R. E. Jenkins, D. Milburn, et al., “The influence of thermokarst disturbance on the water quality of small upland lakes, Mackenzie Delta Region, Northwest Territories, Canada,” Permafrost Periglacial Processes 16, 343–353 (2005).

    Article  Google Scholar 

  29. J. B. Murton, “2001, thermokarst sediments and sedimentary structures, Tuktoyaktuk Coastlands, Western Arctic Canada,” Global Planetary Change 28 (1), 175–192 (2001).

    Article  Google Scholar 

  30. J. R. Mackay, “Contemporary Pingos: A discussion,” Biul. Peryglacjalny 27, 133–154 (1978).

    Google Scholar 

  31. M. Allard, “Geomorphological changes and permafrost dynamics: Key factors in changing Arctic ecosystems: An example from Bylot Island, Nunavut, Canada,” Geosci. Canada 23 (4), 205–2012 (1996).

    Google Scholar 

  32. M. Ulrich, S. Wetterich, N. Rudaya, et al., “Rapid thermokarst evolution during the mid-Holocene in Central Yakutia, Russia,” Holocene 27 (12), 1899–1913 (2017).

    Article  Google Scholar 

  33. A. D. Parsekian, B. M. Jones, M. Jones, et al., “Expansion rate and geometry of floating vegetation mats on the margins of thermokarst lakes, Northern Seward Peninsula, Alaska, USA,” Earth Surface Processes Landforms 36 (14), 1889–1897 (2011).

    Article  Google Scholar 

  34. D. S. Olefeldt, G. Goswami, D. Grosse, et al., “Circumpolar distribution and carbon storage of thermokarst landscapes,” Nature Communications 7, 13043 (2016).

    Article  CAS  Google Scholar 

  35. Y. Matsuura, M. Sanada, S. Ohta, and R. V. Desyatkin, “Carbon and nitrogen storage in soils developed on two different toposequences of the Lena River terrain,” in Proceedings of the Second Symposium on the Joint Siberian Permafrost Studies between Japan and Russia in 1993, Tsukuba, Japan, January 13–14,1994 (National Institute for Environmental Studies, Tsukuba, 1994), pp. 177–182.

Download references

Funding

This work was prepared within the project of the Siberian Branch, Russian Academy of Sciences, topic no. 0376-2019-0006 and registration no. AAAA-A19-119040990002-1 and Russian Foundation for Basic Research grant no. 19-29-05151 .

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Desyatkin.

Additional information

Translated by I. Bel’chenko

Roman Vasil’evich Desyatkin, Dr. Sci. (Biol.), is Chief Researcher of the Institute of Biological Problems of the Cryolithozone, Siberian Branch, Russian Academy of Sciences.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Desyatkin, R.V. Specific Features of Soil Formation in Alas Landscapes of the Cryolithozone. Her. Russ. Acad. Sci. 90, 79–87 (2020). https://doi.org/10.1134/S1019331620010153

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1019331620010153

Keywords:

Navigation