Mechanochemistry in Siberia


The development of studies on mechanical activation and mechanochemistry in Siberia is discussed. The role of Siberian scientists in the establishment of this important division of modern chemical science in our country and abroad is shown. It is concluded that the period of the accumulation of primary experimental data has been completed and that it is necessary to develop further basic research related to mechanical action on the reactivity of solids.

This is a preview of subscription content, access via your institution.


  1. 1.

    V. V. Boldyrev, G. V. Sakovich, and L. K. Yakovlev, “Application of the comminution method to analyze polymetallic ores,” in Reports on Research Work by the Members of the Mendeleev All-Union Chemical Society (Moscow, 1953) [in Russian].

    Google Scholar 

  2. 2.

    V. V. Boldyrev and Yu. E. Eremeeva, “Studying the reaction rate of iodides of alkali metals with lead salts during comminution,” Transactions of Tomsk State University, No. 29, 27–31 (1959).

    Google Scholar 

  3. 3.

    V. I. Molchanov and T. S. Yusupov, Physical and Chemical Properties of Finely Dispersed Minerals (Nedra, Moscow, 1981) [in Russian].

    Google Scholar 

  4. 4.

    M. A. Savinkina and A. T. Logvinenko, “Mechanical activation of silicate binding materials,” Izv. SO AN SSSR. Ser. Khim. Nauk, No. 14, 141–144 (1974).

    Google Scholar 

  5. 5.

    V. V. Boldyrew, E. G. Awwakumov, G. Heinicke, and H. Harenz, “Zur triebochemischen Zersetzung von Alkali-bromaten und Nitraten,” Z. Anorg. Allg. Chem., No. 2, 152–158 (1972).

    Article  Google Scholar 

  6. 6.

    V. V. Boldyrev, V. R. Regel’, O. F. Pozdnyakov, et al., “The study of chemical reactions during the destruction of inorganic salt crystals,” Dokl. Akad. Nauk SSSR 221 (3), 634–637 (1975).

    CAS  Google Scholar 

  7. 7.

    V. V. Boldyrev, “Kinetic factors that determine the specifics of mechanochemical processes in inorganic systems,” Kinet. Katal. 13 (6), 1411–1421 (1972).

    CAS  Google Scholar 

  8. 8.

    V. V. Boldyrev and E. G. Avvakumov, “Mechanochemistry of inorganic solids,” Russ. Chem. Rev. 40 (10), 847–859 (1971).

    Article  Google Scholar 

  9. 9.

    V. V. Boldyrev, “Experimental methods in mechanochemistry of inorganic solids,” in Treatise of Materials Science and Technology, Ed. by G. Hermann (Acad. Press, New York, 1983).

    Google Scholar 

  10. 10.

    V. Boldyrev, “Mechanical activation and its application to technology,” J. Chim. Phys. 83 (11–12), 821–829 (1986).

    CAS  Article  Google Scholar 

  11. 11.

    Festkörperchemie: Beitrage aus Forschung und Praxis, Ed. by W. Boldyrev and K. Meyer (VEB Deutscher Verlag für Grundstoffindustrie, Leipzig, 1973).

  12. 12.

    P. G. Fox, “Mechanically initiated chemical reactions in solids,” J. Mat. Sci. 10, 340–360 (1975).

    CAS  Article  Google Scholar 

  13. 13.

    E. G. Avvakumov, Mechanical Methods to Activate Chemical Processes (Nauka, SO AN SSSR, Novosibirsk, 1979) [in Russian].

    Google Scholar 

  14. 14.

    Yu. T. Pavljukhin, Ya. Ya. Medikov, and V. V. Boldyrev, “Magnetic and chemical properties of mechanically activated zinc and nickel ferrites,” Mat. Res. Bull. 18, 1317–1327 (1983).

    CAS  Article  Google Scholar 

  15. 15.

    E. L. Goldberg and S. V. Pavlov, “Conceptual grinding-activation model,” in Proc. Second World Congress on Particle Technology: Kyoto, September 19–22, 1990 (Jap. Soc. Powder Technol., Kyoto, 1990), pp. 507–515.

    Google Scholar 

  16. 16.

    E. Ivanov, I. Konstanchuk, B. Bokhonov, and V. Boldyrev, “Mechanochemical synthesis of icosahedral phases,” Reactivity Solids 7, 167–172 (1989).

    CAS  Article  Google Scholar 

  17. 17.

    E. Yu. Ivanov, I. G. Konstanchuk, A. A. Stepanov, and V. V. Boldyrev, “Mechanical magnesium alloys: New materials for hydrogen energetics,” Dokl. Akad. Nauk SSSR 286 (2), 385–388 (1986).

    CAS  Google Scholar 

  18. 18.

    Mechanochemical Synthesis in Inorganic Chemistry: A Collection of Articles, Ed. by E. G. Avvakumov (Nauka, SO AN SSSR, Novosibirsk, 1991) [in Russian].

  19. 19.

    V. I. Varentsova, V. K. Varentsov, and V. V. Boldyrev, “Intensification of processes in short-circuited electrochemical systems by mechanical activation methods,” Zh. Prikl. Khim. 63 (3), 560–565 (1990).

    CAS  Google Scholar 

  20. 20.

    A. P. Chupakhin, A. A. Sidel’nikov, and V. V. Boldyrev, “Control of the reactivity of solids by changing their mechanical properties,” Reactivity Solids 3, 1–19 (1987).

    CAS  Article  Google Scholar 

  21. 21.

    B. P. Tolochko, M. A. Sheromov, N. Z. Lyakhov, and V. V. Boldyrev, “The use of synchrotron radiation to study reactions in the solid phase,” Dokl. Akad. Nauk SSSR 286 (6), 1415–1417 (1981).

    Google Scholar 

  22. 22.

    V. I. Molchanov, O. G. Selezneva, and E. N. Zhirnov, Activation of Minerals during Comminution (Nedra, Moscow, 1988) [in Russian].

    Google Scholar 

  23. 23.

    V. G. Kulebakin, Bacterial Leaching of Sulfide Minerals (Nauka, SO AN SSSR, Novosibirsk, 1978) [in Russian].

    Google Scholar 

  24. 24.

    V. V. Volkov and K. G. Myakishev, “Mechanochemical synthesis and physicochemical properties of trimethylamine borane and triethylamine borane,” Izv. SO AN SSSR. Ser. Khim. Nauk, No. 1, 23–28 (1989).

    Google Scholar 

  25. 25.

    V. V. Molchanov and R. A. Buyanov, “Mechanochemistry of catalysts,” Russ. Chem. Rev. 69 (5), 435–450 (2000).

    CAS  Article  Google Scholar 

  26. 26.

    A. S. Kolosov, M. V. Chaikina, E. G. Avvakumov, and V. V. Boldyrev, “Mechanochemical activation of apatite and its solvability,” Izv. SO AN SSSR. Ser. Khim. Nauk, No. 2, 52–59 (1978).

    Google Scholar 

  27. 27.

    Yu. D. Kaminskii, Planetary Mechanochemical Reactors: Theory and Practice (Nauka, SO RAN, Novosibirsk, 2015) [in Russian].

    Google Scholar 

  28. 28.

    E. Avvakumov, M. Senna, and N. Kosova, Soft Mechanochemical Synthesis: A Basis for New Chemical Technologies (Kluwer Academic, Boston, 2001).

    Google Scholar 

  29. 29.

    V. V. Boldyrev, “Hydrothermal reactions under mechanochemical action,” Powder Technol. 122 (2), 247–254 (2002).

    CAS  Article  Google Scholar 

  30. 30.

    F. Kh. Urakaev and V. V. Boldyrev, “Mechanism and kinetics of mechanochemical processes in comminuting devices. I. Theory,” Powder Technol. 107 (1–2), 93–107 (2000).

    CAS  Article  Google Scholar 

  31. 31.

    V. K. Smolyakov, O. V. Lapshin, and V. V. Boldyrev, “Mechanochemical synthesis of nanosized products in heterogeneous systems: Macroscopic kinetics,” Int. J. Self-Propag. High-Temp. Synth. 17 (1), 20–29 (2008).

    CAS  Article  Google Scholar 

  32. 32.

    T. F. Grigorieva, A. P. Barinova, and N. Z. Lyakhov, “Mechanosynthesis of nanocomposites,” J. Nanopart. Res. 5 (5), 439–453 (2003).

    CAS  Article  Google Scholar 

  33. 33.

    T. P. Shakhtshneider and V. V. Boldyrev, “Mechanochemical synthesis and mechanical activation of drugs,” in Reactivity of Molecular Solids, Ed. by E. Boldyreva and V. Boldyrev (John Wiley & Sons, New York, 1999), pp. 271–312.

    Google Scholar 

  34. 34.

    Fundamentals of Mechanical Activation, Mechanosynthesis, and Mechanochemical Technologies: Integrative Projects of the RAS Siberian Branch, Ed. by E. G. Avvakumov (SO RAN, Novosibirsk, 2009) [in Russian].

  35. 35.

    E. V. Boldyreva, “Mechanochemistry of inorganic and organic systems: What is similar, what is different?,” Chem. Soc. Rev. 42 (8), 7719–7738 (2013).

    CAS  Article  Google Scholar 

  36. 36.

    I. A. Tumanov, A. F. Achkasov, E. V. Boldyreva, and V. V. Boldyrev, “Following the products of mechanochemical synthesis step after step,” Cryst. Eng. Comm. 13, 2213–216 (2011).

    CAS  Article  Google Scholar 

  37. 37.

    A. A. L. Michalchuk, I. A. Tumanov, V. A. Drebushchak, and E. V. Boldyreva, “Advances in elucidating mechanochemical complexities via implementation of a simple organic system,” Faraday Discussions 170, 311–335 (2014).

    CAS  Article  Google Scholar 

  38. 38.

    I. A. Tumanov, A. F. Achkasov, S. A. Myz’, et al., “Qualitatively different effects of shear and shock mechanical stresses on mechanochemical cocrystallization of piroxicam and amber acid,” Dokl. Akad. Nauk 457 (6), 670–675 (2014).

    Google Scholar 

  39. 39.

    I. A. Tumanov, A. A. L. Michalchuk, A. A. Politov, et al., “Inadvertent liquid assisted grinding: A key to “dry” organic mechano-cocrystallisation?,” Cryst. Eng. Comm. 19, 2830–2835 (2017).

    CAS  Article  Google Scholar 

  40. 40.

    A. A. Michalchuk, I. A. Tumanov, S. Konar, et al., “Challenges of mechanochemistry: Is in situ real-time quantitative phase analysis always reliable? A case study of organic salt formation,” Adv. Sci. 4 (9) (2007). doi doi 10.1002/advs.201700132

    Google Scholar 

  41. 41.

    E. V. Boldyreva, “Non-ambient conditions in the investigation and manufacturing of drug forms,” Cur. Pharmaceut. Design 22, 4981–5000 (2016).

    CAS  Article  Google Scholar 

  42. 42.

    A. V. Dushkin, “Capabilities of the mechanochemical technology of organic synthesis and of the production of new materials,” Khim. Interesakh Ustoich. Razvit. 12 (3), 251–274 (2004).

    CAS  Google Scholar 

  43. 43.

    N. P. Kotsupalo and A. D. Ryabtsev, Intercalation Compounds of Aluminum Hydroxide with Lithium Salts and Their Use in Industrial Practice (Geo, Novosibirsk, 2016) [in Russian].

    Google Scholar 

  44. 44.

    A. Politov and O. Golyazimova, “Increasing the energy yield of mechanochemical transformations: Selected case studies,” Faraday Discussions 170, 345–356 (2014).

    CAS  Article  Google Scholar 

  45. 45.

    O. Lomovsky, A. Bychkov, and I. Lomovsky, “Mechanical pretreatment,” in Biomass Fractionation Technologies for a Lignocellulosic Feedstock Based Biorefinery, Ed. by S. I. Mussatto (Elsevier, Amsterdam, 2016), pp. 23–55.

    Google Scholar 

  46. 46.

    O. I. Lomovsky, I. O. Lomovsky, and D. V. Orlov, “Mechanochemical solid acid/base reactions for obtaining biological active preparations and extracting plant materials,” Green Chem. Letts. Rev. 10 (4), 171–185 (2017).

    CAS  Article  Google Scholar 

  47. 47.

    O. I. Lomovskii and V. V. Boldyrev, Mechanochemistry in Solving Ecological Problems: An Analytical Review (Gos. Pub. Nauch.-Tekh. Bibl. SO RAN, Novosibirsk, 2006) [in Russian].

    Google Scholar 

  48. 48.

    G. Cagnetta, G. Intini, L. Liberti, et al., “The Biomec process for mechanically assisted biodegradation of PCBs in marine sediments,” J. Soils Sediments 15 (1), 240–248 (2015).

    CAS  Article  Google Scholar 

  49. 49.

    O. G. Terekhova, V. I. Itin, A. A. Magaeva, et al., “Mechanochemical synthesis of nanosized ferrite powders from saline systems,” Izv. Vyssh. Uchebn. Zaved. Poroshk. Metallurg. Funkts. Pokr., No. 1, 45–50 (2008).

    Google Scholar 

  50. 50.

    M. Beyer and H. Clausen-Shaumann, “Mechanochemistry: The mechanical activation of covalent bonds,” Chem. Rev. 105 (8), 2921–2944 (2005).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to V. V. Boldyrev.

Additional information

Original Russian Text © V.V. Boldyrev, 2018, published in Vestnik Rossiiskoi Akademii Nauk, 2018, Vol. 88, No. 3, pp. 258–267.

RAS Academician Vladimir Vyacheslavovich Boldyrev is an RAS Advisor and a Professor of Novosibirsk State University.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Boldyrev, V.V. Mechanochemistry in Siberia. Her. Russ. Acad. Sci. 88, 142–150 (2018).

Download citation


  • solid state chemistry
  • mechanochemistry
  • mechanical activation
  • mechanochemical synthesis
  • mechanochemical alloying