Skip to main content
Log in

Refocusing on the dynamics of the Earth’s climate

  • Point of View
  • Published:
Herald of the Russian Academy of Sciences Aims and scope Submit manuscript

Abstract

Our opinion on the properties of the Earth’s climate system does not coincide with that generally accepted. Statistical analysis shows that, if we put aside the most substantial natural perturbing factors, the long-term global temperature dynamics appears as a step function of time. This dynamics is fundamentally different from the climate system’s continuous response to external anthropogenic effects, which is demonstrated in the models of the Intergovernmental Panel on Climate Change. The variants illustrated by a simple model (the system, affected either inadvertently or externally, changes from one quasi-stationary state to another) seem to be more suitable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Myhre, D. Shindell, F.-M. Breon, et al., “Anthropogenic and natural radiative forcing,” in Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by T. F. Stocker, D. Qin, G.-K. Plattner, et al. (Cambridge Univ. Press, New York, 2013), pp. 676–677.

    Google Scholar 

  2. IPCC Report 2007: Climate Change 2007: The Physical Science Basis, Ed. by T. F. Stocker, D. Qin, G.-K. Plattner, et al. (Cambridge Univ. Press, New York, 2007).

  3. IPCC Report 2013: Climate Change 2013: The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by T. F. Stocker, D. Qin, G.-K. Plattner, et al. (Cambridge Univ. Press, New York, 2013).

  4. C. Loehle, “A minimal model for estimating climate sensitivity,” Ecol. Modelling 276, 80 (2014).

    Article  Google Scholar 

  5. G. Flato, J. Marotzke, B. Abiodun, et al., “Evaluation of climate models,” in Climate Change 2013: The Physical Science Basis: Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by T. F. Stocker, D. Qin, G.-K. Plattner, et al. (Cambridge Univ. Press, New York, 2013), pp. 743–825.

    Google Scholar 

  6. J. L. Lean and D. H. Rind, “How natural and anthropogenic influences alter global and regional surface temperatures: 1889 to 2006,” Geophys. Rev. Lett. 35, L18701 (2008).

    Article  Google Scholar 

  7. P. V. Belolipetsky, http://arxivorg/ftp/arxiv/papers/ 1406/1406.5805pdf. Cited January 24, 2016.

  8. J. Tollefson, “Climate change: The case of the missing heat,” Nature 505, 276 (2014).

    Article  CAS  Google Scholar 

  9. J.-L. F. Li, D. E. Waliser, G. Stephens, et al., “Characterizing and understanding radiation budget biases in CMIP3/CMIP5 GCMs, contemporary GCM, and reanalysis,” J. Geophys. Res.: Atmos. 118, 1 (2013).

    CAS  Google Scholar 

  10. A. S. Monin and Yu. A. Shishkov, “Climate as a problem of physics,” Phys. Usp. 43, 381 (2000).

    Article  CAS  Google Scholar 

  11. IPCC Report 2007: Climate Change 2007: The Physical Basis, Ed. by S. Solomon, D. Qin, M. Manning, et al. (Cambridge Univ. Press, New York, 2007).

  12. S. Levitu, J. I. Antono, T. P. Boyer, and C. Stephen, “Warming of the world ocean,” Science 287, 2225 (2000).

    Article  Google Scholar 

  13. C. K. Folland, N. A. Rayner, S. J. Brown, et al., “Global temperature change and its uncertainties since 1861,” Geophys. Rev. Lett. 28, 2621 (2001).

    Article  Google Scholar 

  14. V. Brovkin, “Climate–vegetation interaction,” J. Phys. IV France 12, 37 (2002).

    Article  Google Scholar 

  15. J. A. Rial, R. A. Pielke, M. Beniston, et al., “Nonlinearities, feedbacks, and critical thresholds within the Earth’s climate system,” Climatic Change 65, 11 (2004).

    Article  Google Scholar 

  16. S. I. Bartsev, A. G. Degermendzhi, and D. V. Erokhin, “Principle of the worst scenario in the modelling past and future of biosphere dynamics,” Ecol. Modeling 216, 160 (2008).

    Article  Google Scholar 

  17. D. B. Stephenson, A. Hannachi, and A. O’Neill, “On the existence of multiple climate regimes,” Q. J. R. Meteorol. Soc. 130, 583 (2004).

    Article  Google Scholar 

  18. C. S. Bretherton, J. Uchida, and P. N. Blossey, “Slow manifolds and multiple equilibria in stratocumuluscapped boundary layers,” J. Adv. Model. Earth Syst., No. 14, 20 (2010).

    Google Scholar 

  19. F. D’Andrea, A. Provenzale, R. Vautard, and N. De Noblet-Decoudre, “Hot and cool summers: Multiple equilibria of the continental water cycle,” Geophys. Res. Lett. 33, L24807 (2006).

    Article  Google Scholar 

  20. D. Ferreira, J. Marshall, and B. Rose, “Climate determinism revisited: Multiple equilibria in a complex climate model,” J. Clim. 24, 992 (2011).

    Article  Google Scholar 

  21. S. L. Sessions, S. Sugaya, D. J. Raymond, and A. H. Sobel, “Multiple equilibria in a cloud resolving model using the weak temperature gradient approximation,” J. Geophys. Res. 115, D12110 (2010).

    Article  Google Scholar 

  22. A. Schmittner and A. J. Weaver, “Dependence of multiple climate states on ocean mixing parameters,” Geophys. Res. Lett. 28, 1027 (2001).

    Article  Google Scholar 

  23. S. I. Bartsev, Yu. D. Ivanova, and A. L. Shchemel’, “On the impact of quality of life to biosphere dynamics,” Mat. Biol. Bioinf. 7 (1), 9 (2012).

    Article  CAS  Google Scholar 

  24. P. V. Belolipetskii, S. I. Bartsev, and A. G. Degermendzhi, “A hypothesis about double surging climate change in the 20th century,” Dokl. Earth Sci. 460 (1), 46 (2015).

    Article  CAS  Google Scholar 

  25. V. I. Naidenov, Nonlinear Dynamics of Land Surface Waters (Nauka, Moscow, 2004) [in Russian].

    Google Scholar 

  26. P. D. Williams, “Modelling climate change: The role of unresolved processes,” Phil. Trans. R. Soc., Ser. A 363, 2931 (2005).

    Article  Google Scholar 

  27. R. Buizza, M. Miller, and T. N. Palmer, “Stochastic representation of model uncertainties in the ECMWF ensemble prediction scheme,” Q. J. R. Meteorol. Soc. 125, 2887 (1999).

    Article  Google Scholar 

  28. J. Zavala-Garay, A. M. Moore, and C. L. Perez, “The response of a coupled model of ENSO to observed estimates of stochastic forcing,” J. Clim. 16, 2827 (2003).

    Article  Google Scholar 

  29. C. Piani, W. A. Norton, and D. A. Stainforth, “Equatorial stratospheric response to variations in deterministic and stochastic gravity wave parameterizations,” J. Geophys. Res. 109, D14101 (2004).

    Article  Google Scholar 

  30. J. W.-B. Lin and J. D. Neelin, “Considerations for stochastic convective parameterization,” J. Atmos. Sci. 59, 959 (2002).

    Article  Google Scholar 

  31. R. B. Scott, “Predictability of SST in an idealized, onedimensional, coupled atmosphere–ocean climate model with stochastic forcing and advection,” J. Clim. 16, 323 (2003).

    Article  Google Scholar 

  32. P. S. Berloff, “Random-forcing model of the mesoscale oceanic eddies,” J. Fluid Mech. 529, 71 (2005).

    Article  Google Scholar 

  33. Yu. M. Svirezhev and D. O. Logofet, Sustainability of Biological Communities (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  34. R. G. Khlebopros and A. I. Fet, Nature and Society: Disaster Models (Sibirskii Khronograf, Novosibirsk, 1999) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Saltykov.

Additional information

Original Russian Text © S.I. Bartsev, P.V. Belolipetskii, A.G. Degermendzhi, Yu.D. Ivanova, A.A. Pochekutov, M.Yu. Saltykov, 2016, published in Vestnik Rossiiskoi Akademii Nauk, 2016, Vol. 86, No. 3, pp. 244–251.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bartsev, S.I., Belolipetskii, P.V., Degermendzhi, A.G. et al. Refocusing on the dynamics of the Earth’s climate. Her. Russ. Acad. Sci. 86, 135–142 (2016). https://doi.org/10.1134/S1019331616020015

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1019331616020015

Keywords

Navigation