Skip to main content
Log in

Contemporary climate changes in the Arctic

  • General Meeting of the Russian Academy of Sciences
  • Published:
Herald of the Russian Academy of Sciences Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, Ed. by T. F. Stocker, D. Qin, G.-K. Plattner, et al. (Cambridge Univ. Press, Cambridge, 2013).

    Google Scholar 

  2. Second Roshydromet Assessment Report on Climate Change and Its Consequences in the Russian Federation. General Summary (Roshydromet, Moscow, 2014).

  3. I. I. Mokhov, V. A. Semenov, V. Ch. Khon, and F. A. Pogarskii, “Change of sea ice extent in the Arctic and the associated climatic effects: Detection and simulation,” Led i Sneg, No. 2, 53 (2013).

    Google Scholar 

  4. G. V. Alekseev, “Arctic dimension of global warming,” Led i Sneg, No. 2, 53 (2014).

    Google Scholar 

  5. F. Pithan and T. Mauritsen, “Arctic amplification dominated by temperature feedbacks in contemporary climate models,” Nature Geoscience 7, 181 (2014).

    Article  Google Scholar 

  6. G. V. Gruza and E. Ya. Ran’kova, Observed and Expected Climate Changes in Russia: Air Temperature (VNIIGMI-MTsD, Obninsk, 2012) [in Russian].

    Google Scholar 

  7. K. K. Tung, J. Zho, and C. D. Camp, “Constraining model transient climate response using independent observations of solar-cycle forcing and response,” Geophys. Res. Lett. 35(17), L17707 (2008).

    Article  Google Scholar 

  8. A. I. Shiklomanov, R. B. Lammers, D. P. Lettenmaier, et al., “Hydrological changes: Historical analysis, contemporary status, and future projections,” in Regional Environmental Changes in Siberia and Their Global Consequences (Springer, Dordrecht, 2013).

    Google Scholar 

  9. V. C. Khon and I. I. Mokhov, “The hydrological regime of large river basins in Northern Eurasia in the XX-XXI centuries,” Water Resour. 39(1), 1 (2012).

    Article  Google Scholar 

  10. V. C. Khon, I. I. Mokhov, M. Latif, et al., “Perspectives of Northern Sea Route and Northwest Passage in the 21st century,” Climatic Change, Nos. 3–4 (2010).

    Google Scholar 

  11. V. C. Khon, I. I. Mokhov, F. A. Pogarsky, et al., “Wave heights in the 21st century Arctic Ocean simulated with a regional climate model,” Geophys. Rev. Lett. 41(8),2956 (2014).

    Article  Google Scholar 

  12. Snow, Water, Ice, and Permafrost in the Arctic (SWIPA): Climate Change and the Cryosphere. AMAP (Arctic Monitoring and Assessment Programme) (Oslo, 2011).

  13. A. V. Pavlov and G. V. Malkova, “Small-scale mapping of trends of the contemporary ground temperature changes in the Russian North,” Kriosfera Zemli 13(4),32 (2009).

    Google Scholar 

  14. M. M. Arzhanov and I. I. Mokhov, “Temperature trends in the permafrost of the Northern Hemisphere: Comparisons of model calculations with observations,” Dokl. Earth Sci. 449(1), 319 (2013).

    Article  Google Scholar 

  15. A. V. Eliseev, I. I. Mokhov, M. M. Arzhanov, et al., “Interaction of the methane cycle and processes in wetland ecosystems in a climate model of intermediate complexity,” Izv., Atmos. Ocean. Phys. 44(2), 139 (2008).

    Article  Google Scholar 

  16. S. N. Denisov, M. M. Arzhanov, A. V. Eliseev, and I. I. Mokhov, “Assessment of the response of subaqueous methane hydrate deposits to possible climate change in the twenty-first century,” Dokl. Earth Sci. 441(2), 1706 (2011).

    Article  Google Scholar 

  17. I. I. Mokhov and M. G. Akperov, “Tropospheric lapse rate and its relation to surface temperature from reanalysis data,” Izv., Atmos. Ocean. Phys. 42(4), 430 (2006).

    Article  Google Scholar 

  18. M. G. Akperov, I. I. Mokhov, A. Rinke, et al., “Cyclones and their possible changes in the Arctic by the end of the twenty first century from regional climate model simulations,” Theor. Appl. Climatol. (2014). doi 10.1007/s00704-014-1272-2.

    Google Scholar 

  19. A. R. Lupo, R. J. Oglesby, and I. I. Mokhov, “Climatological features of blocking anticyclones: A study of Northern Hemisphere CCM1 model blocking events in present-day and double CO2 concentration atmospheres,” Clim. Dyn. 13, 181 (1997).

    Article  Google Scholar 

  20. I. I. Mokhov, A. V. Timazhev, and A. R. Lupo, “Changes in atmospheric blocking characteristics within Euro-Atlantic region and Northern Hemisphere as a whole in the 21st century from model simulations using RCP anthropogenic scenarios,” Glob. Planet. Change 122, 265 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. I. Mokhov.

Additional information

Original Russian Text © I.I. Mokhov, 2015, published in Vestnik Rossiiskoi Akademii Nauk, 2015, Vol. 85, Nos. 5–6, pp. 478–484.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokhov, I.I. Contemporary climate changes in the Arctic. Her. Russ. Acad. Sci. 85, 265–271 (2015). https://doi.org/10.1134/S1019331615030168

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1019331615030168

Keywords

Navigation