Skip to main content
Log in

Current technologies and basic research in neurosurgery

  • On the Rostrum of the RAS Presidium
  • Published:
Herald of the Russian Academy of Sciences Aims and scope Submit manuscript

Abstract

Neurosurgery, a relatively young and very complex area of medical practice, has reached incredible successes over the 100 years of its development as an independent trend largely due to the integration of research achievements and the improvement of medical equipment and surgical methods. At the same time, neurosurgery itself has always been a source of basic knowledge on the nervous system, not only drawing information from areas such as genetics, biochemistry, and physiology but also enriching them with data about pathological and normal states, as well as about the functioning of the nervous system. This process of cross-fertilization, stimulated by the emergence of ever-newer technological opportunities, not only demonstrates the productivity of research that interfaces basic and practice-oriented disciplines but also holds out hope for increasing the positive statistics about the number of patients with various traumas and organic diseases saved and returned to normal life, in particular, by methods of neuroprotection and stimulation of neurogenesis, or at least for improving the quality of life in the case of irremediable diseases, including neuromodulation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. N. Konovalov and A. A. Potapov, “Neurosurgery: Successes and problems,” Vestn. Ross. Akad. Med. Nauk, No. 2 (2011).

    Google Scholar 

  2. A. N. Konovalov, A. A. Potapov, A. G. Gavrilov, et al., “Current technologies in neurosurgery,” in Current Technologies and Clinical Research in Neurosurgery, Ed. by A. N. Konovalov (IP T.A. Alekseeva, Moscow, 2012) [in Russian].

    Google Scholar 

  3. A. A. Potapov, L. B. Likhterman, V. L. Zel’man, V. N. Kornienko, and A. D. Kravchuk, Evidence-Oriented Neurotraumatology (PBOYuL Andreeva TM, Moscow, 2003) [in Russian].

    Google Scholar 

  4. K. V. von Wild, F. Gerstenbrand, G. Dolce, et al., “Guidelines for quality management of apallic syndrome / vegetative state,” European J. Trauma Emergency Surgery 33, 268 (2007).

    Article  Google Scholar 

  5. P. E. Vos, Y. Alekseenko, L. Battistin, et al., “European Federation of Neurological Societies: Mild traumatic brain injury,” European J. Neurology 19, 91 (2012).

    Article  Google Scholar 

  6. A. A. Potapov, M. M. Yusupova, V. D. Tenedieva, A. G. Nikitin, and V. V. Nosikov, “Clinical and prognostic significance of genetic markers of the APOE gene under cranium-brain traumas,” Vopr. Neirokhirurg. Im. N.N. Burdenko, No. 3 (2010).

    Google Scholar 

  7. L. B. Oknina, E. V. Sharova, O. S. Zaitsev, et al., “Long-latent components of acoustic induced potential (N100, N200, and P300) in consciousness recovery forecasting in patients with severe cranium-brain traumas,” Vopr. Neirokhirurg. Im. N.N. Burdenko, No. 3 (2011).

    Google Scholar 

  8. Ya. A. Zorkina, G. M. Yusubalieva, F. A. Koshkin, et al., “Expression of VEGF, GFAP, and BDNF genes in the rat brain after various options of fractionated G-ray treatment,” Byull. Eksp. Biol. Med., No. 4 (2014).

    Google Scholar 

  9. M. Gazzaniga, “Forty-five years of split-brain research and still going strong,” Nature Rev. Neurosci. 6, 653 (2005).

    Article  Google Scholar 

  10. P. J. Horner and F. H. Gage, “Regenerating the damaged central nervous system,” Nature 407, 963 (2007).

    Google Scholar 

  11. Diagnostic Neuroradiology, Ed. by V. Kornienko and I. Pronin (Springer, Berlin, 2009).

    Google Scholar 

  12. N. Zakharova, V. Kornienko, A. Potapov, and I. Pronin, Neuroimaging of Traumatic Brain Injury (Springer Int. Pub., Switzerland, 2014).

    Book  Google Scholar 

  13. G. Ojemann, J. Ojemann, E. Lettich, and M. Berger, “Cortical language localization in left, dominant hemisphere,” J. Neurosurg. 108, 411 (2008).

    Article  Google Scholar 

  14. T. A. Dobrokhotova, O. M. Grindel’, N. N. Bragina, et al., “Consciousness recovery after a lengthy coma in patients with severe cranium-brain traumas,” Zh. Nevrologii Psikhiatrii Im. S.S. Korsakova, No. 5 (1985).

    Google Scholar 

  15. T. A. Dobrokhotova, A. A. Potapov, O. S. Zaitsev, and L. B. Likhterman, “Reversible postcomatose unconscious conditions,” Sotsial’naya Klinicheskaya Psikhiatriya, No. 2 (1996).

    Google Scholar 

  16. E. V. Sharova, V. G. Amcheslavskii, A. A. Potapov, et al., “EEG effects of therapeutic electric stimulation of the human brain in the posttraumatic unconscious state,” Human Physiol. 27(2), 155 (2001).

    Article  Google Scholar 

  17. V. G. Skrebitskii and M. B. Shtark, “Fundamental basics of the nervous system’s plasticity,” Vestn. Ross. Akad. Med. Nauk, No. 9 (2012).

    Google Scholar 

  18. N. D. Schiff, J. T. Giciano, K. Kalmar, et al., “Behavioral improvements with thalamic stimulation after severe traumatic brain injury,” Nature 448(7153), 600 (2007).

    Article  Google Scholar 

  19. A. V. Evseev, V. Ya. Panchenko, and V. P. Yakunin, “Laser synthesis of 3-D objects from photopolymerizing compositions,” in Extracts of the Russian National Conference “Laser Technologies.” Shatura, April 14–16, 1993 (1993).

    Google Scholar 

  20. A. N. Antonov, A. V. Evseev, S. V. Kamaev, et al., “Laser stereolithography-a technology of the laminated production of 3-D objects from liquid photopolymerizing compositions,” Opt. Tekh., No. 13 (1998).

    Google Scholar 

  21. I. P. Ganin, S. L. Shishkin, A. G. Kochetova, and A. Ya. Kaplan, “P300-based brain-computer interface: The effect of the stimulus position in a stimulus train,” Human Physiol. 38(2), 121 (2012).

    Article  Google Scholar 

  22. A. A. Potapov, V. N. Kornienko, A. D. Kravchuk, et al., “Modern technologies in surgical treatment of cranium and brain trauma consequences,” Vestn. Ross. Akad. Med. Nauk, No. 9 (2012).

    Google Scholar 

  23. J. P. Donoghue, A. Nurmikko, M. Black, and L. R. Hochberg, “Assistive technology and robotic control using motor cortex ensemble-based neural interface system in humans with tetraplegia,” J. Physiol. 579, 603 (2007).

    Article  Google Scholar 

  24. N. E. Zakharova, A. A. Potapov, V. N. Kornienko, et al., “Assessment of the brain pathways’ condition under diffuse axonal disorders using diffuse tensor magnetic resonance tomography,” Vopr. Neirokhirurg. Im. N.N. Burdenko, No. 2 (2010).

    Google Scholar 

  25. N. E. Zakharova, A. A. Potapov, V. N. Kornienko, et al., “Dynamic study of the structure of the mesolobus and corticospinal tracts using diffuse tensor magnetic resonance tomography under diffuse axonal disorders,” Vopr. Neirokhirurg. Im. N.N. Burdenko, No. 3 (2010).

    Google Scholar 

  26. L. B. Likhterman, A. A. Potapov, A. D. Kravchuk, and V. A. Okhlopkov, “A classification of consequences of a cranium-brain trauma,” Nevrologicheskii Zh., No. 3 (1998).

    Google Scholar 

  27. E. V. Aleksandrova, O. S. Zaytsev, and A. A. Potapov, “Neurotransmitter basis of consciousness and unconsciousness,” N.N. Burdenko J. Neurosurg. 78(1), 24 (2014).

    Google Scholar 

  28. E. Alexandrova, N. Zakharova, O. Zaitsev, et al., “Neuromediator structures damaging in clinical evaluation of severe traumatic brain injury,” J. Neurotrauma 29(10), 18 (2012).

    Google Scholar 

  29. A. A. Potapov, N. E. Zakharova, V. N. Kornienko, et al., “The neuroanatomical foundations for a traumatic coma: Clinical and magnetic resonance correlates,” N.N. Burdenko J. Neurosurg. 78(1), 4 (2014).

    Google Scholar 

  30. A. A. Potapov, N. E. Zakharova, I. N. Pronin, et al., “Prognostic significance of monitoring intracranial and cerebral perfusion pressure, regional blood flow indicators under diffuse and focal brain damages,” Vopr. Neirokhirurg. Im. N.N. Burdenko, No. 3 (2011).

    Google Scholar 

  31. N. E. Zakharova, V. N. Kornienko, A. A. Potapov, and I. N. Pronin, Neurovisualization of Structural and Hemodynamic Disorders under a Brain Trauma (IP T.A. Alekseeva, Moscow, 2013) [in Russian].

    Google Scholar 

  32. G. V. Danilov, N. E. Zakharova, A. A. Potapov, et al., “Blood flow in the brain stem in coma patients after a severe cranium-brain trauma,” in Proc. of IV International Conference “Basic and Applied Aspects of Consciousness Recovery after Brain Coma: An Interdisciplinary Approach” (St. Petersburg, 2014) [in Russian].

    Google Scholar 

  33. A. W. Togo, K. A. Clark, P. M. Thomson, et al., “Mapping the connectome,” Neurosurgery 71, 1 (2012).

    Article  Google Scholar 

  34. K. Kupferschmidt, “Graphene and brain project win European jackpot,” Science 339, 497 (2013).

    Article  Google Scholar 

  35. S. A. Goryainov, A. A. Potapov, V. B. Loshchenov, and T. A. Savel’eva, Fluorescent Navigation and Laser Spectroscopy in Brain Glioma Surgery (Media Sfera, Moscow, 2014) [in Russian].

    Google Scholar 

  36. A. A. Potapov, D. J. Usachev, V. A. Loshakov, et al., “First experience in 5-ALA fluorescence-guided and endoscopically assisted microsurgery of brain tumors,” Med. Las. Applic. 23, 202 (2008).

    Article  Google Scholar 

  37. A. A. Potapov, A. G. Gavrilov, S. A. Goryainov, et al., “Intraoperative fluorescent diagnostics in laser spectroscopy in brain glial tumor surgery,” Vopr. Neirokhirurg. Im. N.N. Burdenko, No. 5 (2012).

    Google Scholar 

  38. M. Loshchenov, P. Zelenkov, A. Potapov, et al., “Endoscopic fluorescence visualization of 5-ALA photosensitized central nervous system tumors in the neural tissue transparency spectral range,” Photonics Lasers Med. 0, 1 (2013).

    Google Scholar 

  39. T, A. Savelieva, V. B. Loshchenov, V. V. Volkov, et al., “The method of intraoperative analysis of structural and metabolic changes in the area of tumor resection. Proc. SPIE 9129,” in Biophotonics: Photonic Solutions for Better Health Care IV, 91290T (2014).

    Google Scholar 

  40. S. A. Goryainov, A. A. Potapov, D. A. Gol’bin, et al., “Fluorescence diagnostics and laser biospectroscopy as a method of multimodal neuronavigation in neurosurgery,” Vopr. Neirokhirurg. Im. N.N. Burdenko, No. 6 (2012).

    Google Scholar 

  41. A. N. Konovalov, A. A. Potapov, L. B. Likhterman, et al., Reconstructive and Minimally Invasive Surgery of Cranium-Brain Trauma Consequences (IP T.A. Alekseeva, Moscow, 2012) [in Russian].

    Google Scholar 

  42. F. A. Serbinenko, “Catheterization and occlusion of major cerebral vessels,” J. Neurosurg., No. 4 (1974).

    Google Scholar 

  43. V. I. Shabalov and E. D. Isagulyan, What Is to Be Done with Hard Pain? (Electrostimulation of the Spinal Marrow and Brain in Treatment of Nononcological Pain) (Izd. Real-Grafika, Moscow, 2008) [in Russian].

    Google Scholar 

  44. K. Deisseroth, G. Feng, A. K. Majewska, et al., “Nextgeneration optical technologies for illuminating genetically targeted brain circuits,” J. Neurosci. 26, 100380 (2006).

    Article  Google Scholar 

  45. P. J. Horner and F. H. Gage, “Regenerating the damaged central nervous system,” Nature 407, 963 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandr Aleksandrovich Potapov.

Additional information

Original Russian Text © A.A. Potapov, A.N. Konovalov, V.N. Kornienko, A.D. Kravchuk, L.B. Likhterman, I.N. Pronin, N.E. Zakharova, E.V. Aleksandrova, A.G. Gavrilov, S.A. Goryainov, G.V. Danilov, 2015, published in Vestnik Rossiiskoi Akademii Nauk, 2015, Vol. 85, No. 4, pp. 299–309.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Potapov, A.A., Konovalov, A.N., Kornienko, V.N. et al. Current technologies and basic research in neurosurgery. Her. Russ. Acad. Sci. 85, 112–121 (2015). https://doi.org/10.1134/S1019331615020124

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1019331615020124

Keywords

Navigation