Skip to main content
Log in

The principles of creating new-generation magnetic memory

  • On the Rostrum of the RAS Presidium
  • Published:
Herald of the Russian Academy of Sciences Aims and scope Submit manuscript

Abstract

One of substantial achievements in the development of information technologies is the increase in the capacity of digital media and the decrease in their size. A paper heard at an RAS Presidium meeting reports about the distinguishing features of multilayered magnetic structures and their characteristic fundamental effects, the discovery of which allowed for this technological breakthrough, as well as about modern studies aimed at further enhancement of information reading and recording technologies. The authors focus on the creation of magnetoresistive memory with electric field-assisted writing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. N. Baibich, J. M. Broto, A. Fert, et al., “Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices,” Phys. Rev. Lett. 61, 2472 (1988).

    Article  Google Scholar 

  2. G. Binasch, P. Grünberg, F. Saurenbach, and W. Zinn, “Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange,” Phys. Rev. B 39, 4828 (1989).

    Article  Google Scholar 

  3. A. I. Morosov and A. S. Sigov, “New type of domain walls: Domain walls caused by frustrations in multilayer magnetic nanostructures,” Phys. Solid State 46, 395 (2004).

    Article  Google Scholar 

  4. A. I. Morosov and A. S. Sigov, “Frustrated multilayered ferromagnet-antiferromagnet structures: Beyond the scope of exchange approximation (a review),” Phys. Solid State 54, 219 (2012).

    Article  Google Scholar 

  5. V. D. Levchenko, Yu. S. Sigov, A. I. Morosov, and A. S. Sigov, “‘Unusual’ domain walls in multilayer systems: ferromagnet+layered antiferromagnet,” JETP 87, 985 (1998).

    Article  Google Scholar 

  6. U. Schlickum, N. Janke-Gilman, W. Wulfhekel, and J. Kirschner, “Step-induced frustration of antiferromagnetic order in Mn on Fe(001),” Phys. Rev. Lett. 92, 107203 (2004).

    Article  Google Scholar 

  7. R. Thomas, J. F. Scott, D. N. Bose, and R. S. Katiyar, “Multiferroic thin-film integration onto semiconductor devices,” J. Phys.: Cond. Matt. 22, 423201 (2010).

    Google Scholar 

  8. J.-M. Hu, Z. Li, J. Wang, C.-W. Nan, et al., “Electricfield control of strain-mediated magnetoelectric random access memory,” J. Appl. Phys. 107, 093912 (2010).

    Article  Google Scholar 

  9. J. Ma, J. Hu, Z. Li, and C.-W. Nan, “Recent progress in multiferroic magnetoelectric composites: From bulk to thin films,” Adv. Mater. 23, 1062 (2011).

    Article  Google Scholar 

  10. G. Catalan and J. F. Scott, “Physics and applications of bismuth ferrite,” Adv. Mater. 21, 2463 (2009).

    Article  Google Scholar 

  11. G. Lawes and G. Srinivasan, “Introduction to magnetoelectric coupling and multiferroic films,” J. Phys. D: Appl. Phys. 44, 243001 (2011).

    Article  Google Scholar 

  12. C. Ederer and N. A. Spaldin, “Weak ferromagnetism and magnetoelectric coupling in bismuth ferrite,” Phys. Rev. B 71, 060401 (2005).

    Article  Google Scholar 

  13. M. Ramazanoglu, M. Laver, W. Ratcliff II, et al., “Local weak ferromagnetism in single-crystalline ferroelectric BiFeO3,” Phys. Rev. Lett. 107, 207206 (2011).

    Article  Google Scholar 

  14. A. I. Morosov and A. S. Sigov, “Electric field induced remagnetization in the two-layer system ferromagnet-magnetoelectric,” Nano-Mikrosistemn. Tekh., No. 10, 10 (2012).

    Google Scholar 

  15. N. C. Koon, “Calculations of exchange bias in thin films with ferromagnetic/antiferromagnetic interfaces,” Phys. Rev. Lett. 78, 4865 (1997).

    Article  Google Scholar 

  16. Y. -H. Chu, L. W. Martin, M. B. Holcomb, et al., “Electric-field control of local ferromagnetism using a magnetoelectric multiferroic,” Nature Materials 7, 478 (2008).

    Article  Google Scholar 

  17. J. T. Heron, M. Trassin, K. Ashraf, et al., “Electricfield-induced magnetization reversal in ferromagnet-multiferroic heterostructures,” Phys. Rev. Lett. 107, 217202 (2011).

    Article  Google Scholar 

  18. S. M. Wu, S. A. Cybart, D. Yi, et al., “Full electric control of exchange bias,” Phys. Rev. Lett. 110, 067202 (2013).

    Article  Google Scholar 

  19. D. L. Vinokurov and A. I. Morosov, “Magnetic structure of the compensated ferromagnet-multiferroic interface,” Phys. Solid State 55, 2246 (2013).

    Article  Google Scholar 

  20. D. L. Vinokurov, “Numerical modeling of the magnetic structure of the compensated ferromagnet-multiferroic interface,” Nano-Mikrosistemn. Tekh., No. 4, 34 (2014).

    Google Scholar 

  21. P. Yu, J.-S. Lee, S. Okamoto, et al., “Interface ferromagnetism and orbital reconstruction in BiFeO3-La0.7Sr0.3MnO3 heterostructures,” Phys. Rev. Lett. 105, 027201 (2010).

    Article  Google Scholar 

  22. N. A. Pertsev, “Giant magnetoelectric effect via strain-induced spin reorientation transitions in ferromagnetic films,” Phys. Rev. B 78, 212102 (2008).

    Article  Google Scholar 

  23. J.-M. Hu and C. W. Nan, “Electric-field induced magnetic easy-axis reorientation in ferromagnetic-ferroelectric layered structure,” Phys. Rev. B 80, 224416 (2009).

    Article  Google Scholar 

  24. A. Brandlmaier, S. Geprags, M. Weiler, et al., “In situ manipulation of magnetic anisotropy in magnetic thin film,” Phys. Rev. B 77, 104445 (2008).

    Article  Google Scholar 

  25. S. Polisetty, W. Echtenkamp, K. Jones, et al., “Piezo-electric tuning of exchange bias in BaTiO3/Co/CoO heterostructures,” Phys. Rev. B 82, 134419 (2010).

    Article  Google Scholar 

  26. M. Buzzi, R. V. Chopdekar, J. L. Hockel, et al., “Single domain spin manipulation by electric fields in strain coupled artificial multiferroic nanostructures,” Phys. Rev. Lett. 111, 027204 (2013).

    Article  Google Scholar 

  27. N. Tiercelin, V. Preobrazhensky, V. Mortet, et al., “Thin film magnetoelectric composites near spin reorientation transition,” J. Magn. Magn. Mater. 321, 1803 (2009).

    Article  Google Scholar 

  28. T. Wu, A. Bur, K. Wong, et al., “Electric control of reversible and permanent magnetization reorientation for magnetic memory devices,” Appl. Phys. Lett. 98, 262504 (2011).

    Article  Google Scholar 

  29. T. X. Nan, Z. Y. Zhou, J. Lou, et al., “Voltage impulse induced bistable magnetization switching in multiferroic heterostructures,” Appl. Phys. Lett. 100, 132409 (2012).

    Article  Google Scholar 

  30. S. Zhang, Y. G. Zhao, P. S. Li, et al., “Electric-field control of nonvolatile magnetization in Co40Fe40B20/Pb(Mg1/3Nb2/3)0.7Ti0.3O3,” Phys. Rev. Lett. 108, 137203 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandr Igorevich Morosov.

Additional information

Original Russian Text © A.I. Morosov, A.S. Sigov, 2014, published in Vestnik Rossiiskoi Akademii Nauk, 2014, Vol. 84, No. 11, pp. 973–979.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morosov, A.I., Sigov, A.S. The principles of creating new-generation magnetic memory. Her. Russ. Acad. Sci. 84, 407–412 (2014). https://doi.org/10.1134/S1019331614060069

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1019331614060069

Keywords

Navigation