Skip to main content
Log in

Experimental quantum information with single atoms and photons

  • From the Researcher’s Notebook
  • Published:
Herald of the Russian Academy of Sciences Aims and scope Submit manuscript

Abstract

This article is devoted to the current state of experimental studies on the use of single neutral atoms caught by optical traps as quantum computer qubits and on the use of single photons for information transfer. The experimental results of observing interaction between two Rydberg atoms are presented, and experiments in quantum cryptography and data transfer by single photons are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. P. Feynman, “Quantum mechanical computers,” Opt. News 11, 11 (1985).

    Article  Google Scholar 

  2. D. P. DiVincenzo, “The physical implementation of quantum computation,” Fortschr. Phys. 48, 771 (2000).

    Article  Google Scholar 

  3. K. A. Valiev, “Quantum computers and quantum computations,” Phys. Usp. 48(1), 1 (2005).

    Article  Google Scholar 

  4. L. M. K. Vandersypen and I. L. Chuang, “NMR techniques for quantum control and computation,” Rev. Mod. Phys. 76, 1037 (2004).

    Article  Google Scholar 

  5. J. J. Garcia-Ripoll, P. Zoller, and J. I. Cirac, “Quantum information processing with cold atoms and trapped ions,” J. Phys., Ser. B 38, 567 (2005).

    Article  Google Scholar 

  6. D. Loss and D. P. DiVincenzo, “Quantum computation with quantum dots,” Phys. Rev., Ser. A 57, 120 (1998).

    Article  Google Scholar 

  7. Y. Makhlin, G. Schön, and A. Shnirman, “Quantumstate engineering with Josephson-junction devices,” Rev. Mod. Phys. 73, 357 (2001).

    Article  Google Scholar 

  8. G. K. Brennen, C. M. Caves, P. S. Jessen, and I. H. Deutsch, “Quantum logic gates in optical lattices,” Phys. Rev. Lett. 82, 1060 (1999).

    Article  Google Scholar 

  9. I. I. Ryabtsev, D. B. Tretyakov, and I. I. Beterov, “Applicability of Rydberg atoms to quantum computers,” J. Phys., Ser. B 38, 421 (2005).

    Article  Google Scholar 

  10. M. Schlosser, J. Kruse, C. Gierl, et al., “Fast transport, atom sample splitting, and single-atom qubit supply in two-dimensional arrays of optical microtraps,” New J. Phys. 14, 123034 (2012).

    Article  Google Scholar 

  11. D. D. Yavuz, P. B. Kulatunga, E. Urban, et al., “Fast ground state manipulation of neutral atoms in microscopic optical traps,” Phys. Rev. Lett. 96, 063001 (2006).

    Article  Google Scholar 

  12. D. Jaksh, J. I. Cirac, P. Zoller, et al., “Fast quantum gates for neutral atoms,” Phys. Rev. Lett. 85, 2208 (2000).

    Article  Google Scholar 

  13. M. D. Lukin, M. Fleischhauer, R. Cote, et al., “Dipole blockade and quantum information processing in mesoscopic atomic ensembles,” Phys. Rev. Lett. 87, 037901 (2001).

    Article  Google Scholar 

  14. M. Saffman, T. Walker, and K. Molmer, “Quantum information with Rydberg atoms,” Rev. Mod. Phys. 82, 2313 (2010).

    Article  Google Scholar 

  15. T. Wilk, A. Gaetan, C. Evellin, et al., “Entanglement of two individual neutral atoms using Rydberg blockade,” Phys. Rev. Lett. 104, 010502 (2010).

    Article  Google Scholar 

  16. L. Isenhower, E. Urban, X. L. Zhang, et al., “Demonstration of a neutral atom controlled-NOT quantum gate,” Phys. Rev. Lett. 104, 010503 (2010).

    Article  Google Scholar 

  17. D. B. Tret’yakov, I. I. Beterov, V. M. Entin, et al., “Investigation of cold rubidium Rydberg atoms in a magneto-optical trap,” JETP 108(3), 374 (2009).

    Article  Google Scholar 

  18. I. I. Ryabtsev, D. B. Tretyakov, I. I. Beterov, and V. M. Entin, “Observation of the Stark-tuned Forster resonance between two Rydberg atoms,” Phys. Rev. Lett. 104, 073003 (2010).

    Article  Google Scholar 

  19. I. I. Ryabtsev, D. B. Tretyakov, I. I. Beterov, et al., “Stark-tuned Forster resonance and dipole blockade for two to five cold Rydberg atoms: Monte Carlo simulations for various spatial configurations,” Phys. Rev., Ser. A 82, 053409 (2010).

    Article  Google Scholar 

  20. C. Weitenberg, M. Endres, J. F. Sherson, et al., “Single-spin addressing in an atomic Mott insulator,” Nature 471, 319 (2011).

    Article  Google Scholar 

  21. I. I. Beterov, D. B. Tretyakov, V. M. Entin, et al., “Deterministic single-atom excitation via adiabatic passage and Rydberg blockade,” Phys. Rev., Ser. A 84, 023413 (2011).

    Article  Google Scholar 

  22. I. I. Ryabtsev, I. I. Beterov, D. B. Tretyakov, et al., “Doppler- and recoil-free laser excitation of Rydberg states via three-photon transitions,” Phys. Rev., Ser. A 84, 053409 (2011).

    Article  Google Scholar 

  23. N. Gisin, G. Ribordy, W. Title, et al., “Quantum cryptography,” Rev. Mod. Phys. 74, 145 (2002).

    Article  Google Scholar 

  24. W. K. Wooters and W. H. Zurek, “A single quantum cannot be cloned,” Nature 299, 802 (1982).

    Article  Google Scholar 

  25. C. H. Bennet and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in Proc. of IEEE Inter. Conf. on Comput. Sys. and Sign. Process. (Bangalore, India, 1984), pp. 175–179.

    Google Scholar 

  26. C. H. Bennet, F. Bessette, G. Brassard, et al., “Experimental quantum cryptography,” J. Cryptology 5, 3 (1992).

    Google Scholar 

  27. P. Villoresi, T. Jennewein, F. Tamburini, et al., “Experimental verification of the feasibility of a quantum channel between space and earth,” New J. Phys. 10, 033038 (2008).

    Article  Google Scholar 

  28. R. Ursin, F. Tiefenbacher, T. Schmitt-Manderbach, et al., “Entanglement based quantum communication over 144 km,” Nature Phys. 3, 481 (2007).

    Article  Google Scholar 

  29. V. L. Kurochkin, I. I. Ryabtsev, and I. G. Neizvestnyi, “Quantum key generation based on coding of polarization states of photons,” Opt. Spectrosc. 96(5), 703 (2004).

    Article  Google Scholar 

  30. V. L. Kurochkin, I. I. Ryabtsev, and I. G. Neizvestnyi, “Quantum cryptography and quantum-key distribution with single photons,” Russ. Microelectronics 35(1), 31 (2006).

    Article  Google Scholar 

  31. A. Muller, J. Breguet, and N. Gisin, “Experimental demonstration of quantum cryptography using polarized photons in optical fiber over more than 1 km,” Europhys. Lett. 23(6), 383 (1993).

    Article  Google Scholar 

  32. V. L. Kurochkin, A. V. Zverev, Yu. V. Kurochkin, et al., “Using single-photon detectors for quantum key distribution in an experimental fiber-optic communication system,” Optoelectronics, Instrumentation, Data Processing 45(4), 374 (2009).

    Article  Google Scholar 

  33. H. Kosaka, A. Tomita, Y. Nambu, et al., “Single-photon interference experiment over 100 km for quantum cryptography system using balanced gated-mode photon detector,” Electron. Lett. 39, 1119 (2003).

    Article  Google Scholar 

  34. H. Takesue, S. W. Nam, Q. Zhang, et al., “Quantum key distribution over a 40-dB channel loss using superconducting single-photon detectors,” Nature Photonics 1, 343 (2007).

    Article  Google Scholar 

  35. D. Stucki, N. Gisin, O. Guinnard, et al., “Quantum key distribution over 67 km with a plug&play system,” New J. Phys. 4, 41 (2002).

    Article  Google Scholar 

  36. V. L. Kurochkin, A. V. Zverev, Yu. V. Kurochkin, et al., “Experimental studies in quantum cryptography,” Russ. Microelectronics 40(4), 245 (2011).

    Article  Google Scholar 

Download references

Authors

Additional information

Original Russian Text © I.I. Ryabtsev, I.I. Beterov, D.B. Tretyakov, V.M. Entin, V.L. Kurochkin, A.V. Zverev, I.G. Neizvestny, 2013, published in Vestnik Rossiiskoi Akademii Nauk, 2013, Vol. 83, No. 7, pp. 606–615.

Igor Il’ich Ryabtsev, Dr. Sci. (Phys.-Math.), is head of the Laboratory of Nonlinear Resonance Processes and Laser Diagnostics at the Rzhanov Institute of Semiconductor Physics, RAS Siberian Branch (ISP SB RAS). Il’ya Igorevich Beterov, Cand. Sci. (Phys.-Math.), is a junior researcher at ISP SB RAS. Denis Borisovich Tretyakov, Cand. Sci. (Phys.-Math.), is a junior researcher at ISP SB RAS. Vasilii Matveevich Entin, Cand. Sci. (Phys.-Math.), is a researcher at ISP SB RAS. Vladimir Leonidovich Kurochkin, Cand. Sci. (Phys.-Math.), is a senior researcher at ISP SB RAS. Aleksei Viktorovich Zverev, Cand. Sci. (Phys.-Math.), is a researcher at ISP SB RAS. RAS Corresponding Member Igor Georgievich Neizvestny is a professor in the Department of Semiconductor Devices and Microelectronics at Novosibirsk State Technical University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ryabtsev, I.I., Beterov, I.I., Tretyakov, D.B. et al. Experimental quantum information with single atoms and photons. Her. Russ. Acad. Sci. 83, 336–344 (2013). https://doi.org/10.1134/S1019331613040047

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1019331613040047

Keywords

Navigation