Skip to main content
Log in

Metamaterials: Basic research and potential applications

  • On the Rostrum of the RAS Presidium
  • Published:
Herald of the Russian Academy of Sciences Aims and scope Submit manuscript

Abstract

Metamaterials, which were discussed at a meeting of the RAS Presidium, are artificially produced or composed media whose properties are determined by parameters of their elements and may be very unusual. Some metamaterials refract or reflect electromagnetic waves (light) in a way that is not available in nature. Others, such as photonic crystals, can stop (lock) electromagnetic waves or transmit them along channels (waveguides) that normally do not propagate such waves. The unique properties of metamaterials and their possible applications are discussed in the article below.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. I. Mandel’shtam, “Lectures Delivered on February 26, 1940, and May, 5 1944,” in Complete Collection of Works (Akad. Nauk SSSR, Moscow, 1950), Vol. 5 [in Russian].

    Google Scholar 

  2. D. V. Sivukhin, “On the Electromagnetic Field Energy in Dispersive Media,” Opt. Spektrosk. 3, 308–312 (1957).

    Google Scholar 

  3. V. K. Agranovich and V. L. Ginzburg, Crystallooptics with Regard to Spatial Dispersion and the Theory of Excitons (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  4. V. G. Veselago, “Electrodynamics of Substances with Simultaneously Negative Values of ɛ and μ,” Usp. Fiz. Nauk 92, 517 (1967).

    Google Scholar 

  5. Electrophysical Properties of Percolation Systems, Ed. by A.N. Lagar’kova (IVTAN, Moscow, 1990) [in Russian].

    Google Scholar 

  6. A. N. Lagarkov, V. N. Semenenko, V. A. Chistyaev, et al., “Resonance Properties of Bi-Helix Media at Microwaves,” Electromagnetics 17, 213–237 (1997).

    Article  Google Scholar 

  7. V. N. Semenenko, V. A. Chistyaev, and D. E. Ryabov, “Microwave Magnetic Properties of Bi-Helix Media in Dependence on Helix Pitch,” in Proceedings of the “Bianisotropics 98” 7th International Conference on Complex Media, Braunschweig, Germany. June 3–6, 1998, pp. 313–316.

  8. D. R. Smith, W. T. Padilla, D. C. Vier, et al., “Composite Medium with Simultaneously Negative Permittivity and Permeability,” Phys. Rev. 84, 4184 (2000).

    Google Scholar 

  9. S. A. Schelkunoff and H. T. Friis, Antennas: Theory and Practice (John Willey & Sons, New York, 1952), p. 584.

    Google Scholar 

  10. J. B. Pendry, “Negative Refraction Makes a Perfect Lens,” Phys. Rev. Lett. 85, 3966–3969 (2000).

    Article  Google Scholar 

  11. A. N. Lagarkov and V. N. Kissel, “A Study into the Field of Focusing Using ‘Left-Handed’ Materials,” in Proceedings of the 2nd International Conference on Materials for Advanced Technologies, Symposium F: Electromagnetic Materials (Singapore, 2003), pp. 145–148; “Numerical and Experimental Investigation of the Superresolution in a Focusing System Based on a Plate of Left-Handed Material,” in Proceedings of the 2nd International Conference on Materials for Advanced Technologies, Symposium F: Electromagnetic Materials, Singapore, 2003, pp. 157–260; “Near-Perfect Imaging in a Focusing System Based on a Left-Handed-Material Plate,” Phys. Rev. Lett. 92, 077 401 (2004).

    Google Scholar 

  12. M. C. K. Wiltshire, J. B. Pendry, and J. V. Hajnal, “Sub-Wavelength Imaging at Radio Frequency,” J. Phys.: Condensed Matter 18, L315–L321 (2006).

    Article  Google Scholar 

  13. V. M. Shalaev, Wenshan Cai, Uday K. Chettiar, et al., “Negative Index of Refraction in Optical Metamaterials,” Opt. Lett. 30, 3356 (2005).

    Article  Google Scholar 

  14. A. N. Grigorenko and A. K. Geim, H. F. Gleeson, et al., “Nanofabricated Media with Negative Permeability at Visible Frequencies,” Nature 438, 335 (2005).

    Article  Google Scholar 

  15. M. I. Stockman, “Criterion for Negative Refraction with Low Optical Losses from a Fundamental Principle Causality,” Phys. Rev. Lett. 98, 177–404 (2004).

    Google Scholar 

  16. J. D. Joannopoulos, et al., Photonic Crystals: Molding of Flow of Light (Princeton Univ. Press, New York, 1995).

    Google Scholar 

  17. Photonic Bandgap Materials, Ed. by C.M. Soukoulis (Kluwer Academic, Dordrecht, 1996).

    Google Scholar 

  18. K. Sakoda, Optical Properties of Photonic Crystals (Springer, Berlin, 2001).

    Google Scholar 

  19. P. S. J. Russell, “Photonic Crystal Fibers,” Science 299, 358 (2003).

    Article  Google Scholar 

  20. M. V. Ryabko, S. A. Nikitov, and Yu. K. Chamorovskii, “Microstructural Fibers,” Nano-Mikrosist. Tekhn., No. 5, 33–43 (2005).

  21. M. Inoue, K. Aral, T. Fujii, and M. Abe, “Magneto-Optical Properties of One-Dimensional Photonic Crystals Composed of Magnetic and Dielectric Layers,” J. Appl. Phys. 83, 6768–6770 (1998).

    Article  Google Scholar 

  22. M. Notomi, “Theory of Light Propagation in Strongly Modulated Photonic Crystals: Refractionlike Behavior in the Vicinity of the Photonic Band Gap,” Phys. Rev. B 62, 10696–10705 (2000).

    Google Scholar 

  23. C. Luo, S. G. Jonson, J. D. Joannopoulos, and J. B. Pendry, “All-Angle Negative Refraction without Negative Effective Index,” Phys. Rev. B 65, 201104(R) (2002).

  24. X. Zhang and Z. Liu, “Negative Refraction of Acoustic Waves in Two-Dimensional Phononic Crystals,” Appl. Phys. Lett. 85, 341–343 (2004).

    Article  Google Scholar 

  25. Yu. V. Gulyaev, S. A. Nikitov, A. V. Zhivotovskii, et al., “Ferromagnetic Films with with Magnon Bandgap Periodic Structures: Magnon Crystals,” JETP Lett. 77, 567 (2003).

    Article  Google Scholar 

  26. S. L. Vysotskii, S. A. Nikitov, and Yu. A. Filimonov, “Magnitostatic Spin Waves in Two-Dimensional Periodic Structures (Magnetophotonic Crystals),” JETP 101, 547 (2005).

    Article  Google Scholar 

Download references

Authors

Additional information

Original Russian Text © Yu.V. Gulyaev, A.N. Lagar’kov, S.A. Nikitov, 2008, published in Vestnik Rossiiskoi Akademii Nauk, 2008, Vol. 78, No. 5, pp. 438–449.

Academician Yurii Vasil’evich Gulyaev is director of the Kotel’nikov Institute of Radio Engineering and Electronics, RAS. RAS Corresponding Member Andrei Nikolaevich Lagar’kov is director of the RAS Institute of Theoretical and Applied Electrodynamics. RAS Corresponding Member Sergei Apollonovich Nikitov is a deputy director of the Kotel’nikov Institute of Radio Engineering and Electronics, RAS.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gulyaev, Y.V., Lagar’kov, A.N. & Nikitov, S.A. Metamaterials: Basic research and potential applications. Her. Russ. Acad. Sci. 78, 268–278 (2008). https://doi.org/10.1134/S1019331608030143

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1019331608030143

Keywords

Navigation