Skip to main content
Log in

An Investigation on the Corrosion Protection of Mild Steel by Using the Conducting Polymer Polyaniline: Chemical and Electrochemical Studies

  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

The interest for the preservation of the steel structure of ships and their prevention from corrosion in salted water is becoming more demanding with respect to the release of the toxic substances and their impacts on environment. Therefore, it is urgent to develop an adequate inhibitor to preserve the sea from the pollution. In this context, the study of the corrosion inhibition of a mild steel in seawater (i.e. 5% NaCl) by the polymer polyaniline (PANI) was carried out by using conventional techniques such as weight loss, electrochemical methods and scanning electron microscopy (SEM) coupled with the Energy Dispersive Spectrometry (EDX).The monitoring by cyclic voltammetry (i.e. current vs. voltage) allowed to see the influence of the scanning speed on the surface steel phenomena and showed also a linear evolution of the cathodic current density with the square root of the voltage scanning rate (i.e. Ip = f(V1/2), where the diffusional type of charges transport was made in evidence. Whilst, the polarization curves using the sweep voltammetry in conjunction of the Tafel’s processing, permitted to record the corrosion parameters. The electrochemical tests are thus, promising and have made it possible to highlight the effect of PANI cathodic corrosion inhibitor. The results obtained so far reveal a significant effectiveness against steel corrosion even at lower concentration (i.e. 0.3 g/L) where the inhibition rate was optimized to 93.28%. Besides, the SEM and EDX analyses allowed the clarification of the inhibition mechanism and support the relative inhibition efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. K. Kamaraj, Rajani Devarapalli, T. Siva, and S. Sathiyanarayanan, Mater. Phys. Chem. 153, 256 (2015).

    CAS  Google Scholar 

  2. S. Cosnier and A. Karyakin, Electropolymerization: Concepts, Materials and Applications (Wiley-VCH, Weinheim, 2010).

    Book  Google Scholar 

  3. D. E. Tallman, Y. Pae, and G. P. Bierwagen, Corrosion 56, 401 (2000).

    Article  CAS  Google Scholar 

  4. L. Cecchetto, R. Ambat, A. J. Davenport, D. Delabouglise, J.-P. Petit, and O. Neel, Corros. Sci. 49, 818 (2007).

    Article  CAS  Google Scholar 

  5. Y. Z. Gao, J. A. Syed, H. B. Lu, and X. K. Meng, Appl. Surf. Sci. 360, 389 (2016).

    Article  CAS  Google Scholar 

  6. Y. Zhang, Y. Shao, X. Liu, C. Shi, Y. Wang, G. Meng, X. Zeng, and Y. Yang, Prog. Org. Coat. 111, 240 (2017).

    Article  CAS  Google Scholar 

  7. A. Cook, A. Gabriel, and A. Laycock, J. Electrochem. Soc. 151, 529 (2004).

    Article  Google Scholar 

  8. M. I. Khan, A. Amari, A. Mustafa, H. Shoukry, I. H. Ali, S. A. Umoren, and A. Madhan Kumar, J. Electrochem. Sci. 13, 7385 (2018).

    Article  CAS  Google Scholar 

  9. C. K. Tan and D. J. Blackwood, Corros. Sci. 45, 545 (2003).

    Article  CAS  Google Scholar 

  10. A. Olad and A. Rashidzadeh, Prog. Org. Coat. 62 (3), 293 (2008).

    Article  CAS  Google Scholar 

  11. M. Fahlman, S. Jasty, and A. J. Epstein, Synth. Met. 85, 1323 (1997).

    Article  CAS  Google Scholar 

  12. E. Armelin, R. Pla, F. Liesa, X. Ramis, J. I. Iribarren, and C. Aleman, Corros. Sci. 50, 721 (2008).

    Article  CAS  Google Scholar 

  13. N.M. Martyak and P. McAndrew, Corros. Sci. 49, 3826 (2007). https://doi.org/10.1016/j.corsci.2007.05.013

    Article  CAS  Google Scholar 

  14. D. E. Tallman, G. M. Spinks, A. J. Dominis, and G. G. Wallace, J. Solid State Electrochem. 6, 73 (2002).

    Article  CAS  Google Scholar 

  15. S. Ameen, M. S. Akhtar, and S. G. Ansari, Superlattices Microstruct. 46, 872 (2009).

    Article  CAS  Google Scholar 

  16. V. Dixit, S. C. K. Misra, and B. S. Sharma, Sens. Actuators, B 104, 90 (2005).

    Article  CAS  Google Scholar 

  17. S. Dkhili, S. Lopez-Bernabeu, F. Huerta, F. Montilla, S. Besbes-Hentati, and E. Morallon, Synth. Met. 245, 61 (2018).

    Article  CAS  Google Scholar 

  18. K. Gurunathan, D. P. Amalnerkar, and D. C. Trivedi, Mater. Lett. 57, 1642 (2003).

    Article  CAS  Google Scholar 

  19. B. H. Shambharkar and S. S. Umare, Mater. Sci. Eng. B 175, 120 (2010).

    Article  CAS  Google Scholar 

  20. W. Jia, E. Segal, D. Kornemandel, Y. Lamhot, M. Narkis, and A. Siegmann, Synth. Met. 128, 115 (2002).

    Article  CAS  Google Scholar 

  21. R. P. Xu, Y. Q. Li, and J. X. Tang, J. Mater. Chem. C 4, 9116 (2016).

    Article  CAS  Google Scholar 

  22. J. Tang, X. Wen, Z. Liu, J. Wang, and P. Zhang, Colloid Surf. A 552, 24 (2018)

    Article  CAS  Google Scholar 

  23. P. C. Lacaze, J. Ghilane, H. Randriamahazaka, and J.‑C. Lacroix, Electroactive Conducting Polymers for the Protection of Metals Against Corrosion: from Micro to Nanostructured Films, in Nanostructured Conductive Polymers, Ed. by A. Eftekhari (John Wiley and Sons, Chichester, 2010), pp. 631–680.

    Google Scholar 

  24. D. Sazou and C. Georgolios, J. Electroanal. Chem. 429, 81 (1997).

    Article  CAS  Google Scholar 

  25. X. Lua, W. Zhanga, C. Wang, T. Wen, and Y. Wei, Prog. Polym. Sci. 36, 671 (2011).

    Article  Google Scholar 

  26. D. Donescu, R.C. Fierascu, M. Ghiurea, D. Manaila-Maximean, C. A. Nicolae, R. Somoghi, C. I. Spataru, N. Stanica, V. Raditoiu, and E. Vasile, Appl. Surf. Sci. 414, 8 (2017).

    Article  CAS  Google Scholar 

  27. Y. Zhao, Z. Zhang, L. Yu, and T. Jiang, Synth. Met. 234, 166 (2017).

    Article  CAS  Google Scholar 

  28. G. M. Spinks, A. J. Dominis, and G. G. Wallace, and D. E. Tallman, J. Solid State Electrochem. 6, 85 (2002).

    Article  CAS  Google Scholar 

  29. T. D. Nguyen, T. A. Nguyen, M. C. Pham, B. Piro, B. Normand, and H. Takenouti, J. Electrochem. 572, 225 (2004).

  30. P. J. Kinlen, V. Menon, and Y. A. Ding, J. Electrochem. Soc. 146, 3690 (1999).

    Article  CAS  Google Scholar 

  31. C. A. Apostolopoulos and D. Michalopoulos, J. Mater. Eng. Perform. 15, 742 (2006).

    Article  CAS  Google Scholar 

  32. S. Deng, X. Li, and H. Fu, Corros. Sci. 53, 3596 (2011).

    Article  CAS  Google Scholar 

  33. F. Assassi and N. Benharrats, Nano Metal. Chem. 51, 805 (2021).

    CAS  Google Scholar 

  34. J. Stejskal and R. G. Gilbert, Pure Appl. Chem. 74, 857 (2002).

    Article  CAS  Google Scholar 

  35. D. W. DeBerry, J. Electrochem. Soc. 132, 1022 (1985).

    Article  CAS  Google Scholar 

  36. R. G. Pearson, Inorg. Chem. 27, 734 (1988).

    Article  CAS  Google Scholar 

  37. E. S. Ferreira, C. Giancomelli, F. C. Giacomelli, and A. Spinelli, Mater. Chem. Phys. 83, 129 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatima Assassi.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assassi, F., Ouis, N., Benharrats, N. et al. An Investigation on the Corrosion Protection of Mild Steel by Using the Conducting Polymer Polyaniline: Chemical and Electrochemical Studies. Polym. Sci. Ser. A 65, 137–146 (2023). https://doi.org/10.1134/S0965545X23700888

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X23700888

Navigation