Skip to main content
Log in

Pomelo Peel Extract as Corrosion Inhibitor for Steel in Simulated Seawater and Acidic Mediums

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

This study was aimed to establish the possibility of using an eco-friendly plant-based pomelo peel with different concentrations to formulate a novel corrosion green inhibitor for steel applications in 3.5% NaCl and 0.1 M HCl solutions at 30 °C. The corrosion rate and inhibition efficiency were evaluated using weight loss, potentiodynamic polarization (PDP), and electrochemical impedance spectroscopy (EIS) techniques corresponded with surface morphology characterization of the corroded steel samples without and with inhibitors using a scanning electron microscope (SEM) and energy-dispersive x-ray analysis (EDS). Based on the Fourier-transform infrared spectroscopy (FTIR) results, it was found that the pomelo peels extract is a mixture of the chemical compounds of naringin (C27H32O14), auraptene (C19H22O3) and naringenin-4′-O-glucoside (C21H22O10). The results were also indicated that there is a remarkable improvement in the inhibition efficiency and corrosion rate of low-carbon steel after the addition of inhibitor, and as well as the immersion time was profound to have a significant effect on the corrosion behavior of the different concentrations of inhibitor. The pomelo peels extract of 8000 ppm concentration gave the best inhibition efficiency of 74.64 and 71.15% in 0.1 M HCl and 3.5% NaCl, respectively. The adsorption isotherm of pomelo peels within different concentrations on the steel surface conforms Langmuir’s isotherm, and the thermodynamic parameters of Kads and ΔG have also been calculated and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. F. Bentiss, M. Lagrenée, and M. Traisnel, 2,5-bis(n-pyridyl)-1,3,4-oxadiazoles as corrosion inhibitors for mild steel in acidic media, Corrosion, 2000, 56(7), p 733–742

    CAS  Google Scholar 

  2. O. Olivares-Xometl, N.V. Likhanova, M.A. Domínguez-Aguilar, E. Arce, H. Dorantes, and P. Arellanes-Lozada, Synthesis and corrosion inhibition of α-amino acids alkylamides for mild steel in acidic environment, Mater. Chem. Phys., 2008, 110(2), p 344–351

    CAS  Google Scholar 

  3. S.A.A. El-Maksoud and A.S. Fouda, Some pyridine derivatives as corrosion inhibitors for carbon steel in acidic medium, Mater. Chem. Phys., 2005, 93(1), p 84–90

    Google Scholar 

  4. P. Muthukrishnan, B. Jeyaprabha, and P. Prakash, Corrosion inhibition and adsorption behavior of Setaria verticillata leaf extract in 1 M sulphuric acid, J. Mater. Eng. Perform., 2013, 22(12), p 3792–3800

    CAS  Google Scholar 

  5. E.-S.M. Sherif, Corrosion mitigation of copper in acidic chloride pickling solutions by 2-amino-5-ethyl-1, 3, 4-thiadiazole, J. Mater. Eng. Perform., 2010, 19(6), p 873–879

    CAS  Google Scholar 

  6. D.T. Nguyen, H.T.X. To, J. Gervasi, Y. Paint, M. Gonon, and M.-G. Olivier, Corrosion inhibition of carbon steel by hydrotalcites modified with different organic carboxylic acids for organic coatings, Prog. Org. Coat. , 2018, 124, p 256–266

    CAS  Google Scholar 

  7. K. Hu, J. Zhuang, J. Ding, Z. Ma, F. Wang, and X. Zeng, Influence of biomacromolecule DNA corrosion inhibitor on carbon steel, Corros. Sci., 2017, 125, p 68–76

    CAS  Google Scholar 

  8. P.B. Raja and M. Sethuraman, Studies on the inhibition of mild steel corrosion by Rauvolfia serpentina in acid media, J. Mater. Eng. Perform., 2010, 19(5), p 761–766

    Google Scholar 

  9. Ü. Ergun and K.C. Emregül, Azole compounds as corrosion inhibitors: part I, J. Mater. Eng. Perform., 2014, 23(1), p 213–221

    CAS  Google Scholar 

  10. A. Fateh, M. Aliofkhazraei, and A.R. Rezvanian, Review of corrosive environments for copper and its corrosion inhibitors, Arab. J. Chem. , 2017, 13(1), p 481–544

    Google Scholar 

  11. C.G. Dariva and A.F. Galio, Corrosion inhibitors—principles mechanisms and applications, Developments in Corrosion Protection, M. Aliofkhazraei, Ed., IntechOpen, London, 2014,

    Google Scholar 

  12. I.B. Obot, S. Kaya, and C. Kaya, Conceptual density functional theory and its application to corrosion inhibition studies, Conceptual Density Functional Theory and Its Application in the Chemical Domain, N. Islam and S. Kaya, Ed., Apple Academic Press, Palm Bay, 2018, p 195–216

    Google Scholar 

  13. M. Sohail, A.D. Chandio, and M. Sheikh, High temperature effectiveness of ginger extract as green inhibitor for corrosion in mild Steel, NUST J. Eng Sci, 2019, 11(1), p 26–32

    Google Scholar 

  14. I. Obot, S. Umoren, and N. Ankah, Pyrazine derivatives as green oil field corrosion inhibitors for steel, J. Mol. Liq., 2018, 277, p 749–761

    Google Scholar 

  15. A. Chiba, M. Koyama, E. Akiyama, and T. Nishimura, interstitial carbon enhanced corrosion resistance of Fe-33Mn-xC austenitic steels: inhibition of anodic dissolution, J. Electrochem. Soc., 2018, 165(2), p C19–C26

    CAS  Google Scholar 

  16. J.P. Srivastava, P.K. Sarkar, A. Gautam, R. Yadav, H. Kumar, Micromechanical characterisation of Indian rail steel, IOP Conference Series: Materials Science and Engineering, 2018, IOP Publishing, p 012104

  17. M. Belghiti, A. Dafali, Y. Karzazi, M. Bakasse, H. Elalaoui-Elabdallaoui, L. Olasunkanmi, E. Ebenso, Computational simulation and statistical analysis on the relationship between corrosion inhibition efficiency and molecular structure of some hydrazine derivatives in phosphoric acid on mild steel surface, Applied Surface Science, (2019)

  18. A.A. Al-Amiery, M.H.O. Ahmed, T.A. Abdullah, T.S. Gaaz, and A.A.H. Kadhum, Electrochemical studies of novel corrosion inhibitor for mild steel in 1 M hydrochloric acid, Res. Phys., 2018, 9, p 978–981

    Google Scholar 

  19. P.E. Alvarez, M.V. Fiori-Bimbi, A. Neske, S.A. Brandán, and C.A. Gervasi, Rollinia occidentalis extract as green corrosion inhibitor for carbon steel in HCl solution, J. Ind. Eng. Chem., 2018, 58, p 92–99

    CAS  Google Scholar 

  20. M. Wang, J.J. Carver, V.V. Phelan, L.M. Sanchez, N. Garg, Y. Peng, D.D. Nguyen, J. Watrous, C.A. Kapono, and T. Luzzatto-Knaan, Sharing and community curation of mass spectrometry data with global natural products social molecular networking, Nat. Biotechnol., 2016, 34(8), p 828

    CAS  Google Scholar 

  21. Y.A. Albrimi, A.A. Addi, J. Douch, R. Souto, and M. Hamdani, Inhibition of the pitting corrosion of 304 stainless steel in 0.5 M hydrochloric acid solution by heptamolybdate ions, Corros. Sci., 2015, 90, p 522–528

    Google Scholar 

  22. P. Morales-Gil, M. Walczak, R. Cottis, J. Romero, and R. Lindsay, Corrosion inhibitor binding in an acidic medium: interaction of 2-mercaptobenizmidazole with carbon-steel in hydrochloric acid, Corros. Sci., 2014, 85, p 109–114

    CAS  Google Scholar 

  23. R.T. Loto, Pitting corrosion evaluation of austenitic stainless steel type 304 in acid chloride media, J. Mater. Environ. Sci., 2013, 4(4), p 448–459

    CAS  Google Scholar 

  24. H. Song and E.R. Carraway, Reduction of chlorinated ethanes by nanosized zero-valent iron: kinetics, pathways, and effects of reaction conditions, Environ. Sci. Technol., 2005, 39(16), p 6237–6245

    CAS  Google Scholar 

  25. C.M. Hansson, Comments on electrochemical measurements of the rate of corrosion of steel in concrete, Cem. Concr. Res., 1984, 14(4), p 574–584

    CAS  Google Scholar 

  26. C.G. Berrocal, K. Lundgren, and I. Löfgren, Corrosion of steel bars embedded in fibre reinforced concrete under chloride attack: state of the art, Cem. Concr. Res., 2016, 80, p 69–85

    CAS  Google Scholar 

  27. N.J. Nnaji, O.T. Ujam, N.E. Ibisi, J.U. Ani, T.O. Onuegbu, L.O. Olasunkanmi, and E.E. Ebenso, Morpholine and piperazine based carboxamide derivatives as corrosion inhibitors of mild steel in HCl medium, J. Mol. Liq., 2017, 230, p 652–661

    CAS  Google Scholar 

  28. D.E. Talbot and J.D. Talbot, Corrosion Science and Technology, CRC Press, Boca Raton, 2018

    Google Scholar 

  29. S.A. Umoren and M.M. Solomon, Synergistic corrosion inhibition effect of metal cations and mixtures of organic compounds: a review, J. Environ. Chem. Eng., 2017, 5(1), p 246–273

    CAS  Google Scholar 

  30. P.B. Cranwell, L.M. Harwood, and C.J. Moody, Experimental Organic Chemistry, Wiley, Hoboken, 2017

    Google Scholar 

  31. E. Ferreira, C. Giacomelli, F. Giacomelli, and A. Spinelli, Evaluation of the inhibitor effect of L-ascorbic acid on the corrosion of mild steel, Mater. Chem. Phys., 2004, 83(1), p 129–134

    CAS  Google Scholar 

  32. A. Dubey and G. Singh, Corrosion inhibition of mild steel in sulphuric acid solution by using polyethylene glycol methyl ether (PEGME), Portugaliae Electrochimica Acta, 2007, 25(2), p 221–235

    CAS  Google Scholar 

  33. M. Kaddouri, M. Bouklah, S. Rekkab, R. Touzani, S. Al-Deyab, B. Hammouti, A. Aouniti, and Z. Kabouche, Thermodynamic, chemical and electrochemical investigations of calixarene derivatives as corrosion inhibitor for mild steel in hydrochloric acid solution, Int. J. Electrochem. Sci., 2012, 7, p 9004–9023

    CAS  Google Scholar 

  34. A. Hamdy and N.S. El-Gendy, Thermodynamic, adsorption and electrochemical studies for corrosion inhibition of carbon steel by henna extract in acid medium, Egyptian J. Pet. , 2013, 22(1), p 17–25

    Google Scholar 

  35. M. Uusitalo, P. Vuoristo, and T. Mäntylä, High temperature corrosion of coatings and boiler steels below chlorine-containing salt deposits, Corros. Sci., 2004, 46(6), p 1311–1331

    CAS  Google Scholar 

  36. N. Hackerman and A. Makrides, Action of polar organic inhibitors in acid dissolution of metals, Ind. Eng. Chem., 1954, 46(3), p 523–527

    Google Scholar 

  37. A.Y. Musa, A.A.H. Kadhum, A.B. Mohamad, and M.S. Takriff, Experimental and theoretical study on the inhibition performance of triazole compounds for mild steel corrosion, Corros. Sci., 2010, 52(10), p 3331–3340

    CAS  Google Scholar 

  38. F. Bentiss, M. Lebrini, N.E. Chihib, M. Abdalah, C. Jama, M. Lagrenée, S. Al-Deyab, and B. Hammouti, Heat treatment effect of polyphosphate derivatives of guanidine and urea copolymer on the corrosion inhibition of armco iron in acid solution and antibacterial properties, Int. J. Electrochem. Sci., 2012, 7, p 3947–3958

    CAS  Google Scholar 

  39. R. Mehdaoui, A. Khelifa, A. Khadraoui, O. Aaboubi, A.H. Ziane, F. Bentiss, and A. Zarrouk, Corrosion inhibition of carbon steel in hydrochloric acid solution by some synthesized surfactants from petroleum fractions, Res. Chem. Intermed., 2016, 42(6), p 5509–5526

    CAS  Google Scholar 

  40. A. Singh and M. Quraishi, The extract of Jamun (Syzygiumcumini) seed as green corrosion inhibitor for acid media, Res. Chem. Intermed., 2015, 41(5), p 2901–2914

    CAS  Google Scholar 

  41. N. ElHamdani, R. Fdil, M. Tourabi, C. Jama, and F. Bentiss, Alkaloids extract of Retama monosperma (L.) Boiss. seeds used as novel eco-friendly inhibitor for carbon steel corrosion in 1 M HCl solution: electrochemical and surface studies, Appl. Surf. Sci., 2015, 357, p 1294–1305

    CAS  Google Scholar 

  42. C.B. Verma, M. Quraishi, and A. Singh, 2-Aminobenzene-1, 3-dicarbonitriles as green corrosion inhibitor for mild steel in 1 M HCl: electrochemical, thermodynamic, surface and quantum chemical investigation, J. Taiwan Inst. Chem. Eng., 2015, 49, p 229–239

    CAS  Google Scholar 

  43. A. Ehsani, M.G. Mahjani, M. Hosseini, R. Safari, R. Moshrefi, and H.M. Shiri, Evaluation of Thymus vulgaris plant extract as an eco-friendly corrosion inhibitor for stainless steel 304 in acidic solution by means of electrochemical impedance spectroscopy, electrochemical noise analysis and density functional theory, J. Colloid Interface Sci. , 2017, 490, p 444–451

    CAS  Google Scholar 

  44. M.S. Al-Otaibi, A.M. Al-Mayouf, M. Khan, A.A. Mousa, S.A. Al-Mazroa, and H.Z. Alkhathlan, Corrosion inhibitory action of some plant extracts on the corrosion of mild steel in acidic media, Arab. J. Chem., 2014, 7(3), p 340–346

    CAS  Google Scholar 

  45. K.M. Hijazi, A. Abdel-Gaber, and G. Younes, Electrochemical corrosion behavior of mild steel in HCl and H2SO4 solutions in presence of loquat leaf extract, Int. J. Electrochem. Sci., 2015, 10, p 4366–4380

    CAS  Google Scholar 

  46. B. Abd-El-Naby, O. Abdullatef, H. El-Kshlan, E. Khamis, and M. Abd-El-Fatahc, Effect of alkaline etching on the inhibition of the acidic corrosion of aluminum by Lupine extract, Portugaliae Electrochimica Acta, 2015, 33(1), p 1–11

    CAS  Google Scholar 

  47. S. Aejitha, P. Kasthuri, and S. Jyothi, Corrosion inhibitory action of Commiphora caudata extract on the mild steel corrosion in 1 M H2SO4 acid medium, J. Adhes. Sci. Technol., 2016, 30(7), p 784–802

    CAS  Google Scholar 

  48. S. Leelavathi and R. Rajalakshmi, Dodonaea viscosa (L. )leaves extract as acid corrosion inhibitor for mild steel–a green approach, J Mater Environ Sci, 2013, 4(5), p 625–638

    CAS  Google Scholar 

  49. A. Khadraoui, A. Khelifa, M. Hadjmeliani, R. Mehdaoui, K. Hachama, A. Tidu, Z. Azari, I. Obot, and A. Zarrouk, Extraction, characterization and anti-corrosion activity of Mentha pulegium oil: weight loss, electrochemical, thermodynamic and surface studies, J. Mol. Liq., 2016, 216, p 724–731

    CAS  Google Scholar 

  50. M. Prabakaran, S.-H. Kim, A. Sasireka, K. Kalaiselvi, and I.-M. Chung, Polygonatum odaratum extract as an eco-friendly inhibitor for aluminum corrosion in acidic medium, J. Adhes. Sci. Technol., 2018, 32(18), p 2054–2069

    CAS  Google Scholar 

  51. A. Fouda, S. Rashwan, M. Kamel, and N. Arman, Adsorption and inhibition behavior of avicennia marina for Zn metal in hydrochloric acid solution, Int. J. Electrochem. Sci., 2017, 12, p 11789–11804

    CAS  Google Scholar 

  52. K. Bouhrira, A. Chetouani, D. Zerouali, B. Hammouti, A. Yahyi, A. Et-Touhami, R. Yahyaoui, and R. Touzani, Theoretical investigation of inhibition of the corrosion of A106 steel in NaCl solution by di-n-butyl bis (thiophene-2-carboxylato-O, O′) tin (IV), Res. Chem. Intermed., 2014, 40(2), p 569–586

    CAS  Google Scholar 

  53. M. Mobin and M.A. Khan, Adsorption and corrosion inhibition behavior of polyethylene glycol and surfactants additives on mild steel in H2 SO4, J. Mater. Eng. Perform., 2014, 23(1), p 222–229

    CAS  Google Scholar 

  54. S.A. Umoren, A.A. AlAhmary, Z.M. Gasem, and M.M. Solomon, Evaluation of chitosan and carboxymethyl cellulose as ecofriendly corrosion inhibitors for steel, Int. J. Biol. Macromol., 2018, 117, p 1017–1028

    CAS  Google Scholar 

  55. S. Bilgic and M. Şahin, The corrosion inhibition of austenitic chromium–nickel steel in H2SO4 by 2-butyn-1-ol, Mater. Chem. Phys., 2001, 70(3), p 290–295

    CAS  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Universiti Teknologi Malaysia (UTM) for the providing research facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esah Hamzah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yee, Y.P., Saud, S.N. & Hamzah, E. Pomelo Peel Extract as Corrosion Inhibitor for Steel in Simulated Seawater and Acidic Mediums. J. of Materi Eng and Perform 29, 2202–2215 (2020). https://doi.org/10.1007/s11665-020-04774-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04774-1

Keywords

Navigation