Skip to main content
Log in

Influence of Distribution Anisotropy and Particle Shape on Magnetorheological Properties of Magnetoactive Elastomers

  • RHEOLOGY
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

Viscoelastic properties of magnetoactive elastomers with spherical and plate-shaped filler have been studied. Four series of samples based on silicone elastomer and carbonyl iron microparticles have been prepared. A series of samples with a concentration of magnetic filler from 30 to 60 wt % which differed in the shape of filler particles (spherical and platelike) and in their distribution in the polymer matrix (isotropic and anisotropic). The magnetorheological properties of the obtained magnetoactive elastomers have been examined by dynamic mechanical analysis. Storage modulus values for samples of different compositions are in the range of 10–100 kPa. It has been shown that anisotropic materials are stiffer than the isotropic counterparts and demonstrate a higher magnetorheological effect: the increase in the elastic modulus of an anisotropic sample with the maximum filler content exceeds an order of magnitude in a magnetic field of 1 T. At the same filler concentrations, materials based on platelike iron are stiffer than those based on spherical iron. At low magnetic filler concentrations, the use of platelike iron makes it possible to achieve a higher magnetic response of the material; at high filler concentrations, the increase in the elastic modulus is greater for samples based on spherical particles. The anisotropic materials exhibit a more pronounced Payne effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. S. B. Choi, W. Li, M. Yu, H. Du, J. Fu, and P. X. Do, Smart Mater. Struct. 25, 043001 (2016).

  2. G. Filipcsei, I. Csetneki, A. Szilágyi, and M. Zrínyi, Adv. Polym. Sci. 206, 137 (2007).

    Article  CAS  Google Scholar 

  3. Ubaidillah, J. Sutrisno, A. Purwanto, and S. A. Mazlan, Adv. Eng. Mater. 17, 563 (2015).

    Article  CAS  Google Scholar 

  4. S. Odenbach, Arch. Appl. Mech. 86, 269 (2016).

    Article  Google Scholar 

  5. M. T. Lopez-Lopez, J. D. G. Durán, L. Yu. Iskakova, and A. Yu. Zubarev, J. Nanofluids 5, 479 (2016).

    Article  Google Scholar 

  6. A. K. Bastola, M. Paudel, L. Li, and W. Li, Smart Mater. Struct. 29, 123002 (2020).

  7. N. Bira, P. Dhagat, and J. R. Davidson, Front. Rob. AI 7, 588391 (2020).

  8. M. Schümann and S. Odenbach, J. Magn. Magn. Mater. 441, 88 (2017).

    Article  Google Scholar 

  9. T. Gundermann and S. Odenbach, Smart. Mater. Struct. 23, 105013 (2014).

  10. G. V. Stepanov, S. S. Abramchuk, D. A. Grishin, L. V. Nikitin, E. Y. Kramarenko, and A. R. Khokhlov, Polymer (Guildf) 48, 488 (2007).

    Article  CAS  Google Scholar 

  11. G. V. Stepanov, D. A. Semerenko, A. V. Bakhtiiarov, and P. A. Storozhenko, J. Supercond. Novel Magn. 26, 1055 (2013).

    Article  CAS  Google Scholar 

  12. I. A. Belyaeva, E. Y. Kramarenko, and M. Shamonin, Polymer (Guildf) 127, 119 (2017).

    Article  CAS  Google Scholar 

  13. S. A. Kostrov, M. Shamonin, G. V. Stepanov, and E. Y. Kra-marenko, Int. J. Mol. Sci. 20, 2230 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. D. Isaev, A. Semisalova, Y. Alekhina, L. Makarova, and N. Perov, Int. J. Mol. Sci. 20, 1457 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. G. Glavan, P. Salamon, I. A. Belyaeva, M. Shamonin, and I. Drevenšek-Olenik, J. Appl. Polym. Sci. 135 (18), 46221 (2018).

    Article  Google Scholar 

  16. V. V. Sorokin, B. O. Sokolov, G. V. Stepanov, and E. Yu. Kramarenko, J. Magn. Magn. Mater. 459, 268 (2018).

    Article  CAS  Google Scholar 

  17. S. A. Kostrov, V. V. Gorodov, B. O. Sokolov, A. M. Mu-zafarov, and E. Yu. Kramarenko, Polym. Sci., Ser. A 62, 383 (2020).

    Article  CAS  Google Scholar 

  18. E. Galipeau and P. Ponte Castañeda, Proc. R. Soc. London, Ser. A 469, 20130385 (2013).

  19. D. V. Saveliev, I. A. Belyaeva, D. V. Chashin, L. Y. Fetisov, D. Romeis, W. Kettl, E. Yu. Kramarenko, M. Saphiannikova, G. V. Stepanov, and M. Shamonin, Materials 13, 3297 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. G. V. Stepanov, E. Y. Kramarenko, and D. A. Semerenko, J. Phys.: Conf. Ser. 412, 012031 (2013).

  21. W. H. Li, Y. Zhou, and T. F. Tian, Rheol. Acta 49, 733 (2010).

    Article  CAS  Google Scholar 

  22. A. Stoll, M. Mayer, G. J. Monkman, and M. Shamonin, J. Appl. Polym. Sci. 131, 131 (2014).

    Article  Google Scholar 

  23. M. Cvek, M. Mrlik, J. Sevcik, and M. Sedlacik, Polymers (Basel) 10, 1411 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  24. R. Moucka, M. Sedlacik, and M. Cvek, Appl. Phys. Lett. 112, 122901 (2018).

  25. T. Tian and M. Nakano, J. Intell. Mater. Syst. Struct. 29, 151 (2018).

    Article  CAS  Google Scholar 

  26. M. M. Schmauch, S. R. Mishra, B. A. Evans, O. D. Velev, and J. B. Tracy, ACS Appl. Mater. Interfaces 9, 11895 (2017).

    Article  CAS  PubMed  Google Scholar 

  27. L. Ding, J. Zhang, Q. Shu, S. Liu, S. Xuan, X. Gong, and D. Zhang, ACS Appl. Mater. Interfaces 13, 13724 (2021).

    Article  CAS  PubMed  Google Scholar 

  28. D. Lin, F. Yang, D. Gong, Z. Lin, R. Li, W. Qian, C. Li, S. Jia, and H. Chen, ACS Appl. Mater. Interfaces 13, 34935 (2021).

    Article  CAS  PubMed  Google Scholar 

  29. H. Lu, M. Zhang, Y. Yang, Q. Huang, T. Fukuda, Z. Wang, and Y. Shen, Nat. Commun. 9, 3944 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  30. M. Farshad and A. Benine, Polym. Test. 23, 347 (2004).

    Article  CAS  Google Scholar 

  31. S. A. Kostrov, V. V. Gorodov, A. M. Muzafarov, and E. Yu. Kramarenko, Polym. Sci., Ser. B 64, 888 (2022).

    Article  CAS  Google Scholar 

  32. M. A. Khanouki, R. Sedaghati, and M. Hemmatian, Composites, Part B 176, 107311 (2019).

  33. J. Kaleta, M. Królewicz, and D. Lewandowski, Smart Mater. Struct. 20, 085006 (2011).

  34. J. Wu, X. Gong, Y. Fan, and H. Xia, Smart Mater. Struct. 19, 105007 (2010).

  35. S. Chougale, D. Romeis, and M. Saphiannikova, Materials 15, 645 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. J. G. Puente- Córdova, M. E. Reyes-Melo, L. M. Palacios-Pineda, I. A. Martínez-Perales, O. Martínez-Romero, and A. Elías-Zúñiga, Polymers (Basel) 10, 1343 (2018).

    Google Scholar 

  37. G. B. Sohoni and J. E. Mark, J. Appl. Polym. Sci. 34, 2853 (1987).

    Article  CAS  Google Scholar 

  38. T. H. Nam, I. Petríková, and B. Marvalová, Polym. Test. 81, 106272 (2020).

  39. E. Coquelle, G. Bossis, D. Szabo, and F. Giulieri, J. Mater. Sci. 41, 5941 (2006).

    Article  CAS  Google Scholar 

  40. R. Chokkalingam, R. S. Pandi, and M. Mahendran, J. Compos. Mater. 45, 1545 (2011).

    Article  CAS  Google Scholar 

  41. A. Boczkowska, S. F. Awietjan, and R. Wroblewski, Smart Mater. Struct. 16, 1924 (2007).

    Article  CAS  Google Scholar 

  42. T. A. Nadzharyan, O. V. Stolbov, Y. L. Raikher, and E. Yu. Kramarenko, Soft Matter 15, 9507 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. G. V. Stepanov, S. I. Kirichenko, E. E. Makhaeva, and E. Yu. Kramarenko, Polym. Sci., Ser. A 65, 157 (2023).

    Article  CAS  Google Scholar 

  44. A. Yu. Grossberg and A. R. Khokhlov, Statistical Physics of Macromolecules (Nauka, Moscow, 1989; Am. Inst. Phys., New York, 1994).

  45. S. Abramchuk, E. Kramarenko, G. Stepanov, L. V. Nikitin, G. Filipcsei, A. R. Khokhlov, and M. Zrínyi, Polym. Adv. Technol. 18, 883 (2007).

    Article  CAS  Google Scholar 

  46. A. R. Payne, J. Appl. Polym. Sci. 9, 3245 (1965).

    Article  CAS  Google Scholar 

  47. S. Richter, M. Saphiannikova, K. W. Stöckelhuber, and G. Heinrich, Macromol. Symp. 291–292, 193 (2010).

  48. R. Hentschke, Express Polym. Lett. 11, 278—292 (2017).

    Article  CAS  Google Scholar 

  49. V. V. Sorokin, E. Ecker, G. V. Stepanov, M. Shamonin, G. J. Monkman, E. Yu. Kramarenko, and A. R. Kho-khlov, Soft Matter 10, 8765 (2014).

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

NMR and GPC studies were carried out at the Shared-Use Center “Polymer Research Center” of the Enikolopov Institute of Synthetic Polymer Materials of the Russian Academy of Sciences with the support of the Ministry of Science and Higher Education of the Russian Federation, topic no. 0071-2021-0004.

The work was supported by the Russian Science Foundation, project no. 19-13-00340-П.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Yu. Kramarenko.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by S. Zatonsky

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kostrov, S.A., Razakov, V.S., Stepanov, G.V. et al. Influence of Distribution Anisotropy and Particle Shape on Magnetorheological Properties of Magnetoactive Elastomers. Polym. Sci. Ser. A 65, 822–830 (2023). https://doi.org/10.1134/S0965545X23600655

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X23600655

Navigation