Skip to main content
Log in

Model of the Atomic Molecular Structure of Miscanthus Sacchariflonis Cellulose Nitrates

  • NATURAL POLYMERS
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

On the basis of X-ray diffraction experiment data the atomic molecular configuration in the short-range order region of amorphous nitrocellulose from Miscanthus is constructed by the computer simulation technique using the HyperChem 8 program. It is shown that the arrangement of atoms in the short-range order region of amorphous nitrocellulose is satisfactorily described by a cluster composed of nine nitrocellulose chains, two cellulose I chains twisted by an angle of 72°, and two untwisted cellulose I chains. Each chain contains ten glucose residues. In the final cluster, the above-mentioned chains form an approximately hexagonal layer in projection on plane ab with a distance between them being 12.2 Å. In projection on plane bc, the dimensions of the final cluster are 28 Å along axis b and 54 Å along axis c. The total number of atoms is 3300, and the degree of polymerization is 130; the formula unit of the asymmetric fragment is [C6H7.24O2(OH)0.92(ONO2)2.08]130. The result reliability is proved by the fact that the experimental curve of X-ray scattering intensity distribution I(s) and the corresponding curve calculated for the cluster coincide with an accuracy of up to 7.5%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

REFERENCES

  1. H. Mattar, Z. Baz, A. Saleh, A. S. A. Shalaby, A. E. Azzazy, H. Salah, and I. Ismail, Wat. Ener. Food. Env. J. 1 (3), 1 (2020).

    Google Scholar 

  2. S. N. Nikolsky, D. V. Zlenko, V. P. Melnikov, and S. V. Stovbun, Carbohydr. Polym. 204, 232 (2019).

    Article  CAS  PubMed  Google Scholar 

  3. D. Trache and A. F. Tarchoun, J. Chemometrics 33 (8), 3163 (2019).

  4. A. Korchagina, Yu. Gismatulina, V. V. Budaeva, A. Kukhlenko, N. P. Vdovina, and P. P. Ivanov, Izv. Vyssh. Uchebn. Zaved., Khim. Khim. Tekhnol. 63 (1), 92 (2020).

    Article  CAS  Google Scholar 

  5. Yu. A. Gismatulina, V. V. Budaeva, and G. V. Sakovich, Russ. Chem. Bull. 64 (12), 949 (2015).

    Article  Google Scholar 

  6. Y. A. Gismatulina, V. V. Budaeva, and G. V. Sakovich, Propellants, Explos. Pyrotech. 43, 96 (2018).

    Article  CAS  Google Scholar 

  7. G. V. Sakovich, Yu. M. Mikhailov, V. V. Budaeva, A. A. Korchagina, Yu. A. Gismatulina, and N. V. Kozyrev, Dokl. Chem. 483, 287 (2018).

    Article  CAS  Google Scholar 

  8. D. Trache and K. Khimeche, J. Therm. Anal. Calorim. 124, 1485 (2016).

    Article  CAS  Google Scholar 

  9. A. F. Tarchoun, D. Trache, T. M. Klapotke, S. Chelouche, M. Derradji, W. Bessa, and A. Mezroua, Macromol. Chem. Phys. 220, 1900358 (2019).

  10. A. F. Tarchoun, D. Trache, T. M. Klapotke, B. Krumm, K. Khimeche, and A. Mezroua, Carbohydr. Polym. 249, 116 820 (2020).

  11. S. Chelouche, D. Trache, A. F. Tarchoun, A. A. Khimeche, and K. A. Mezroua, Thermochim. Acta 673, 78 (2019).

    Article  CAS  Google Scholar 

  12. D. Trache, A. F. Tarchoun, T. M. Klapötke, B. Krumm, and B. Kofen, Fuel 292, 1 (2021).

    Google Scholar 

  13. A. F. Tarchoun, D. Trache, T. M. Klapötke, B. Krumm, A. Mezroua, M. Derradji, and W. Bessa, Cellulose 48, 6107 (2021).

    Article  Google Scholar 

  14. S. Chelouche, D. Trache, A. F. Tarchoun, A. A. Khimeche, and K. A. Mezroua, J. Therm. Anal. Calorim., 1 (2019).

  15. H. Yamamoto, F. Horii, and A. Hirai, Cellulose 13, 327 (2006).

    Article  CAS  Google Scholar 

  16. J. Yu, Y. Wu, S. Wang, and X. Ma, Carbohydr. Polym. 70, 8 (2007).

    Article  CAS  Google Scholar 

  17. A. V. Kostochko, Z. T. Valishina, and M. V. Luzyanina, Vestn. Kazansk. Tekhnol. Univ., No. 9, 45 (2012).

  18. Z. T. Valishina, V. V. Klochkov, G. N. Galiullina, K. A. Loshieva, and A. V. Kostochko, Vestn. Tekhnol. Univ. 18 (18) 142 (2015).

    CAS  Google Scholar 

  19. S. V. Stovbuna, S. N. Nikol’skii, V. P. Mel’nikov, M. G. Mikhaleva, Ya. A. Litvin, A. N. Shchegolikhin, D. V. Zlenko, V. A. Tverdislov, D. S. Gerasimov, and A. D. Rogozin. Russ. J. Phys. Chem. B 10 (2), 245 (2016).

    Article  Google Scholar 

  20. S. Watanabe, K. Imai, and J. Hayashi, J. Chem. Soc. Jpn., Ind. Chem. Sec. 74, 1420 (1971).

    Google Scholar 

  21. S. Watanabe, K. Imai, and J. Hayashi, J. Chem. Soc. Jpn., Ind. Chem. Sec. 74, 1427 (1971).

    CAS  Google Scholar 

  22. J. Hayashi, K. Imai, T. Hamazaki, and S. Watanabe, Jpn. J. Chem, No. 8, 1582 (1973).

  23. J. Hayashi, K. Imai, T. Hamazaki, and S. Watanabe, Jpn. J. Chem, No. 8, 1587 (1973).

  24. S. Watanabe, J. Hayashi, and K. A. Imai, J. Polym. Sci., No. 23, 809 (1968).

  25. D. Meader, E. D. T. Atkins, and F. Happey, Polymer 19, 1371 (1978).

    Article  CAS  Google Scholar 

  26. V. I. Kovalenko, Russ. Chem. Rev. 64, 753 (1995).

    Article  Google Scholar 

  27. L. A. Richards, A. Nash, M. J. S. Phipps, and N. H. de Leeu, New J. Chem. 42, 17420 (2018).

    Article  CAS  Google Scholar 

  28. P. Liu, R. Sun, P. Sui, S. Gao, Zh. Feng, G. Zou, and H. Qi, Mater. Res. Express, 7, 1 (2020).

    Google Scholar 

  29. D. P. Otto, J. Combrinck, A. Otto, L. R. Tiedt, and M. M. de Villiers, Pharmaceuticals 11, 134 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. L. Yang, X. Wu, J. Li, T. Chen, M. Liu, and Q. He, Roy. Soc. Open Sci. 8, 211033 (2021).

  31. X. Qi, H. Li, Yu. Zhao, P. Liu, and Q. Yan, Cellulose 29, 1307 (2022).

    Article  CAS  Google Scholar 

  32. L. A. Aleshina, I. V. Lyukhanova, V. V. Budaeva, V. N. Zolotukhin, R. Yu. Mitrofanov, and G. V. Sakovich, Uch. Zap. Petrozav. Gos. Univ., Ser. Estestv. Tekhnich. Nauki., No. 8, 114 (2011).

  33. A. I. Prusskii and L. A. Aleshina, Polym. Sci., Ser. A 58 (3), 386 (2016).

    Article  CAS  Google Scholar 

  34. N. V. Melekh, S. V. Frolova, and L. A. Aleshina, Polym. Sci., Ser. A 56 (2), 129 (2014).

    Article  CAS  Google Scholar 

  35. C. S. Tsai, An Introduction to Computational Biochemistry (Wiley-Liss, New York, 2002).

    Book  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research, project no. 20-03-00699.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Prusskii.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by T. Soboleva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prusskii, A.I., Aleshina, L.A., Lyukhanova, I.V. et al. Model of the Atomic Molecular Structure of Miscanthus Sacchariflonis Cellulose Nitrates. Polym. Sci. Ser. A 64, 733–743 (2022). https://doi.org/10.1134/S0965545X22700481

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X22700481

Navigation