Skip to main content
Log in

Relationship between the Rheological and Molecular Structural Characteristics of Polypropylene

  • STRUCTURE AND PROPERTIES
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

The results of studying the viscoelastic properties of polypropylene with various melt flow and ethylene unit content are presented. Using rheological measurements in the oscillation regime the data required for the analysis of relationship between the molecular weight characteristics and viscoelastic properties of various polypropylene brands are collected; the time–temperature superposition principle is applied for their processing. The values of the storage modulus and the loss modulus are compared with the MW values measured by GPC for a number of homopolymers and random and block propylene–ethylene copolymers; as result, the relationship between the rheological curves and the MW values is revealed. The results of this study are intended for assembling polymer MW database; in the future, this may contribute to the development of a rapid and accurate method to determine the molecular structure of polymers from rheological measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

Notes

  1. Color figures are available in the electronic version of the journal.

REFERENCES

  1. W. H. Tuminello, Polym. Eng. Sci. 26 (19), 1339 (1986).

    Article  CAS  Google Scholar 

  2. R. Shroff and H. Mavridis, J. Appl. Polym. Sci. 57 (13), 1605 (1995).

    Article  CAS  Google Scholar 

  3. D. Ahirwal, S. Filipe, I. Neuhaus, M. Busch, G. Schlatter, and M. Wilhelm, J. Rheol. 58 (3), 635 (2014).

    Article  CAS  Google Scholar 

  4. Z. Zhou, Y. Zhang, Y. Zhang, and N. Yin, J. Polym. Sci., Polym. Phys. Ed. 46 (5), 526 (2008).

    Article  CAS  Google Scholar 

  5. M. Hostetter and G. D. Hibbard, J. Appl. Polym. Sci. 131 (7), 40074 (2014).

    Article  Google Scholar 

  6. J. K. Jorgensen, A. Stori, and K. Redford, Polymer 46 (26), 12256 (2005).

    Article  CAS  Google Scholar 

  7. H.-T. Wang, H.-Q. Jiang, R.-F. Shen, X.-J. Ding, C. Zhang, L.-F. Li, and J.-Y. Li, Nuclear Sci. Tech. 29 (6), 1 (2018).

    Article  Google Scholar 

  8. G.-J. He, B.-Y. Yuan, T.-T. Zheng, W. L. Zhu, and X.‑C. Yin, RSC Adv. 7 (36), 22531 (2017).

    Article  CAS  Google Scholar 

  9. H. Azizi, I. Ghasemi, and M. Karrabi, Polym. Test. 27 (5), 548 (2008).

    Article  CAS  Google Scholar 

  10. Y. Amintowlieh, C. Tzoganakis, S. G. Hatzikiriakos, and A. Penlidis, Polym. Degrad. Stab. 104, 1 (2014).

    Article  CAS  Google Scholar 

  11. J. Vega and J. Martinez-Salazar, Polym. Bull. 50 (3), 197 (2003).

    Article  CAS  Google Scholar 

  12. C. Das, D. J. Read, J. M. Soulages, and P. P. Shirodkar, Macromolecules 47 (16), 5860 (2014).

    Article  CAS  Google Scholar 

  13. A. Pandey, Y. Champouret, and S. Rastogi, Macromolecules 44 (12), 4952 (2011).

    Article  CAS  Google Scholar 

  14. D. Auhl, F. J. Stadler, and H. Münstedt, Rheol. Acta 51 (11), 979 (2012).

    Article  CAS  Google Scholar 

  15. S. Stanic, T. Koch, K. Schmid, S. Knaus, and V.-M. Archodoulaki, Polymers 13 (7), 1137 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. M. Rubinstein and R. H. Colby, Polymer Physics (Oxford Univ. Press, New York, 2003).

    Google Scholar 

  17. P. S. Garcia, C. H. Scuracchio, and S. A. Cruz, Polym. Test. 32 (7), 1237 (2013).

    Article  CAS  Google Scholar 

  18. H. Niu, Y. Wang, X. Liu, Y. Wang, and Y. Li, Polym. Test. 60, 260 (2017).

    Article  CAS  Google Scholar 

  19. D. Romano, S. Ronca, and S. Rastogi, Macromol. Rapid Commun. 36 (3), 327 (2015).

    Article  CAS  PubMed  Google Scholar 

  20. Y. Jahani, M. Ghetmiri, and M. R. Vaseghi, RSC Adv. 5 (28), 21620 (2015).

    Article  CAS  Google Scholar 

  21. J. M. Dealy, D. J. Read, and R. G. Larson, Structure and Rheology of Molten Polymers: from Structure to Flow Behavior and Back Again (Carl Hanser Verlag GmbH Co KG, Munich, 2018).

    Book  Google Scholar 

  22. C. F. J. Den Doelder, Progress in Industrial Mathematics at ECMI 2000 (Springer, New York, 2002), p. 420.

    Google Scholar 

  23. M. Van Gurp and J. Palmen, Rheol. Bull. 67 (1), 5 (1998).

    Google Scholar 

  24. C. D. Han, Rheology and Processing of Polymeric Materials (Oxford Univ. Press on Demand, Oxford, 2007), Vol. 1.

  25. M. Tajvidi, R. H. Falk, and J. C. Hermanson, J. Appl. Polym. Sci. 97 (5), 1995 (2005).

    Article  CAS  Google Scholar 

  26. A. Deshpande, Ind. Inst. Technol. Madras. F 23, 1 (2009).

  27. L. Sangroniz, D. Cavallo, A. Santamaria, A. J. Muller, and R. G. Alamo, Macromolecules 50 (2), 642 (2017).

    Article  CAS  Google Scholar 

  28. E. Mitsoulis, H.-J. Luger, J. Miethlinger, and W. Friesenbichler, Int. Polym. Proc. 33 (5), 642 (2018).

    Article  CAS  Google Scholar 

  29. T. J. McCallum, M. Kontopoulou, C. B. Park, E. B. Muliawan, and S. G. Hatzikiriakos, Polym. Eng. Sci. 47 (7), 1133 (2007).

    Article  CAS  Google Scholar 

  30. F. Ardakani, Y. Jahani, and J. Morshedian, Polym. Eng. Sci. 54 (8), 1747 (2014).

    Article  CAS  Google Scholar 

  31. R. Pantani, V. Speranza, and G. Titomanlio, Macromol. Theory Simul. 23 (4), 300 (2014).

    Article  CAS  Google Scholar 

  32. S. H. Tabatabaei, P. J. Carreau, and A. Ajji, Chem. Eng. Sci. 64 (22), 4719 (2009).

    Article  CAS  Google Scholar 

  33. J. D. Ferry, Viscoelastic Properties of Polymers (Wiley, New York, 1980).

    Google Scholar 

  34. G. A. Ozin and A. Arsenault, Nanochemistry: A Chemical Approach to Nanomaterials (RSC Publ., London, 2015).

    Google Scholar 

  35. F. Zulli, L. Andreozzi, E. Passaglia, S. Augier, and   M. Giordano, J. Appl. Polym. Sci. 127 (2), 1423 (2013).

    Article  CAS  Google Scholar 

  36. H. E. Park, J. M. Dealy, G. R. Marchand, J. Wang, S. Li, and R. A. Register, Macromolecules 43 (16), 6789 (2010).

    Article  CAS  Google Scholar 

  37. S. S. Bafna, J. Appl. Polym. Sci. 63 (1), 111 (1997).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Program of Strategic Leadership of the Kazan (Volga Region) Federal University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Balkaev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by T. Soboleva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Larionov, I.S., Balkaev, D.A., Salakhov, I.I. et al. Relationship between the Rheological and Molecular Structural Characteristics of Polypropylene. Polym. Sci. Ser. A 64, 624–632 (2022). https://doi.org/10.1134/S0965545X22700432

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X22700432

Navigation