Skip to main content
Log in

Trends in Cryotropic Gelation of Semidilute Aqueous Solutions of Poly(vinyl alcohol) with Different Thermal History

  • POLYMER GELS
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract—

Different trends observed during cryotropic gelation of 8% poly(vinyl alcohol) aqueous solutions (preheated to 25, 55, and 85°С) at rapid cooling and freezing of the system have been examined. The data of rheology, thermomechanical analysis, attenuated total reflection, and scanning electron microscopy have revealed that the macroporous poly(vinyl alcohol) cryogels formed under above conditions differ in elastoplastic properties, swelling ability in water, degree of microcrystallinity, and pores size. The obtained results have been confirmed by the study of diffusional release of stabilized silver nanoparticles from the cryogels. It has been shown that the macropores walls in the cryogel network consist of spherical formations, likely contacting microgel particles formed during the liquid-phase separation of the polymer solution prior to the cryotropic gelation stage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. Hydrogels in Medicine and Pharmacy, Vol. 1, Ed. by N. A. Peppas (CRC Press, New York, 2019).

    Google Scholar 

  2. Ch. M. Hassan and N. A. Peppas, Macromolecules 33, 2472 (2000).

    Article  CAS  Google Scholar 

  3. Polymeric Cryogels Macroporous Gels with Remarkable Properties, Ed. by O. Okay (Springer, New York, 2014).

    Google Scholar 

  4. Polymeric Gels. Characterization, Properties and Biomedical Applications, Ed. by K. Pal and I. Banerjee (Elsevier, Cambridge, 2018).

    Google Scholar 

  5. Biomedical Hydrogels Biochemistry, Manufacture and Medical Applications, Ed. by S. Rimmer (Woodhead Publ. Ltd., Oxford, Cambridge, 2011).

    Google Scholar 

  6. N. A. Peppas, J. Z. Hilt, A. Khademhosseini, and R. Langer, Adv. Mater. 18, 1345 (2006).

    Article  CAS  Google Scholar 

  7. H. Levine, and L. Slade, Water Relationships in Food (Springer, New York 1991).

    Book  Google Scholar 

  8. Ch. M. Hassan and N. A. Peppas, Adv. Polym. Sci. 153, 65 (2000).

    Google Scholar 

  9. R. S. Harland and N. A. Peppas, J. Pharm. Sci. 78 (2), 146 (1989).

    Article  CAS  PubMed  Google Scholar 

  10. B. V. Slaughter, Sh. S. Khurshid, O. Z. Fisher, A. Khademhosseini, and N. A. Peppas, Adv. Mater. 21, 3307 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. M. Kobayashi, J. Toguchida, and M. Oka, Biomaterials 24 (4), 639 (2003).

    Article  CAS  PubMed  Google Scholar 

  12. M. I. Baker, S. P. Walsh, Z. Schwartz, and B. D. Boyan, J. Biomed. Mater. Res. 100B, 1451 (2012).

    Article  CAS  Google Scholar 

  13. Biomaterials for Treating Skin Loss, Ed. by D. Orgill and C. Blanco (CRC Press Woodhead Publ. Ltd., Cambridge, 2009).

    Google Scholar 

  14. S.-H. Hyon, W.-I. Cha, Y. Ikada, M. Kita, Y. Ogura, and Y. Honda, J. Biomater. Sci., Polym. Ed. 5 (5), 397 (1994).

    Article  CAS  Google Scholar 

  15. A. Kumar and S. S. Han, Int. J. Polym. Mater. Polym. Biomater. 66 (4), 159 (2017).

    Article  CAS  Google Scholar 

  16. M. Teodorescu, M. Bercea, and S. Morariu, Polym. Rev. 58 (2), 247 (2018).

    Article  CAS  Google Scholar 

  17. L. Dai and Sh. Yu, Polym. Adv. Technol. 14, 449 (2003).

    Article  CAS  Google Scholar 

  18. V. I. Lozinsky, Russ. Chem. Rev. 67, 573 (1998).

    Article  Google Scholar 

  19. W. Wan, A. D. Bannerman, L. Yang, and H. Mak, Adv. Polym. Sci. 263, 283 (2014).

    Article  CAS  Google Scholar 

  20. Ph. Molyneux, Water-Soluble Synthetic Polymers: Properties and Behavior (CRC Press, Boca Raton London, New York, 1984).

    Google Scholar 

  21. J. L. Valentin, D. Lopez, R. Hernandez, C. Mijangos, and K. Saalwachter, Macromolecules 42, 263 (2009).

    Article  CAS  PubMed  Google Scholar 

  22. V. I. Klenin, O. V. Klenina, V. A. Kolchanov, B. I. Shvartsburd, S. Ya. Frenkel’, Vysokomol. Soedin., Ser. A 16 (10), 2351 (1974).

    CAS  Google Scholar 

  23. T. Nakaoki and H. Yamashita, J. Mol. Struct. 875, 282 (2008).

    Article  CAS  Google Scholar 

  24. Bartenev, G.M. and Frenkel’, S.Ya., Fizika Polimerov (Physics of Polymers) (Khimiya, Leningrad, 1990) [in Russian].

  25. R. Hodge, G. Edward, and G. Simon, Polymer 37 (8), 1371 (1996).

    Article  CAS  Google Scholar 

  26. H. Hatakeyama and T. Hatakeyama, Thermochim. Acta 308, 3 (1998).

    Article  CAS  Google Scholar 

  27. K. Kawanishi, M. Komatsu, and T. Inoue, Polymer 28, 980 (1987).

    Article  CAS  Google Scholar 

  28. E. Otsuka, M. Sugiyama, and A. Suzuki, J. Phys.: Conf. Ser. 247, 1 (2010).

    Google Scholar 

  29. T. Kanaya, N. Takahashi, H. Takeshita, M. Ohkura, K. Nishida, and K. Kaji, Polym. J. 44, 83 (2012).

    Article  CAS  Google Scholar 

  30. O. N. Tretinnikov and S. A. Zagorskaya, J. Appl. Spectroscopy 78 (6), 904 (2012).

  31. A. Bhattacharya and P. Ray, J. Appl. Polym. Sci. 93, 122 (2004).

    Article  CAS  Google Scholar 

  32. Water Soluble Polymers, Ed. by Z. Amjad (Plenum Press, New York, 1998).

    Google Scholar 

  33. Polymeric Cryogels. Macroporous Gels with Remarkable Properties. Advances in Polymer Science, 263, Ed. by O. Okay (Springer Int. Publ., Switzerland, 2014).

    Google Scholar 

  34. N. A. Peppas and E. W. Merrill, J. Appl. Polym. Sci. 21, 1763 (1977).

    Article  CAS  Google Scholar 

  35. K. Arai, M. Okuzono, and T. Shikata, Macromolecules 48 (5), 1573 (2015).

    Article  CAS  Google Scholar 

  36. G. Paradossi, I. Finelli, F. Natali, M. T. F. Telling, and E. Chiessi, Polymers 3, 1805 (2011).

    Article  CAS  Google Scholar 

  37. Ch. Wu, Polymer 51, 4452 (2010).

    Article  CAS  Google Scholar 

  38. V. J. Klenin and I. V. Fedusenko, Polym. Sci., Ser. A 45 (12), 1231 (2003).

    Google Scholar 

  39. O. V. Khorolskyi, Ukr. J. Phys 63 (2), 144 (2018).

    Article  Google Scholar 

  40. Water: Structure, State, Solvation, Ed. by A. M. Kutepova (Nauka, Moscow, 2003) [in Russian].

    Google Scholar 

  41. L. Zhao, K. Ma, and Z. Yang, Int. J. Mol. Sci. 16, 8454 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. T. Hatakeyama, F. X. Quinn, and H. Hatakeyama, Carbohydr. Polym. 30, 155 (1996).

    Article  CAS  Google Scholar 

  43. D. R. Moberg, D. Becker, Ch. W. Dierking, F. Zurheide, B. Bandow, U. Buck, A. Hudait, V. Molinero, F. Paesani, and T. Zeuch, Proc. Natl. Acad. Sci. USA (PNAS) 116, 24413 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. V. I. Lozinsky, E. S. Vainerman, L. V. Domotenko, A. M. Mamtsis, E. F. Titova, E. M. Belavtseva, and S. V. Rogozhin, Colloid Polym. Sci. 264, 19 (1986).

    Article  CAS  Google Scholar 

  45. N. Samoilova, E. Kurskaya, M. Krayukhina, A. Askadsky, and I. Yamskov, J. Phys. Chem. B 113, 3395.

  46. V. A. Kargin and T. I. Sogolova, Zh. Fiz. Khim. 23, 540 (1949).

    CAS  Google Scholar 

  47. E. H. Lee and J. R. Radok, J. Appl. Mech. E 27, 438 (1960).

    Article  Google Scholar 

  48. Sh. Agnihotri, S. Mukherji, and S. Mukherji, RSC Adv. 4, 3974 (2014).

    Article  CAS  Google Scholar 

  49. C. Hara and M. Matsuo, Polymer 36 (3), 603 (1995).

    Article  CAS  Google Scholar 

  50. P. J. Willcox, D. W. Howie, K. Schmidt-Rohr, D. A. Hoagland, S. P. Gido, S. Pudjijanto, L. W. Kleiner, and S. Venkatraman, J. Polym. Sci., Polym. Phys. Ed. 37, 3438 (1999).

    Article  CAS  Google Scholar 

  51. T. Hatakeyema, J. Uno, Ch. Yamada, A. Kishi, and H. Hatakeyama, Thermochim. Acta 431, 144 (2005).

    Article  CAS  Google Scholar 

  52. W. Li, F. Xue, and R. Cheng, Polymer 46, 12026 (2005).

    Article  CAS  Google Scholar 

  53. J. D. Brownridge, Am. J. Phys. 79 (1), 78 (2011).

    Article  CAS  Google Scholar 

  54. T. Hatakeyama, M. Tanaka, and H. Hatakeyama, J. Biomater. Sci., Polym. Ed. 21, 1865 (2010).

    Google Scholar 

  55. T. Hatakeyama, A. Yamauchi, and H. Hatakeyama, Eur. Polym. J. 23, 361 (1987).

    Article  CAS  Google Scholar 

  56. N. A. Peppas and E. W. Merrill, J. Polym. Sci. 14, 441 (1976).

    CAS  Google Scholar 

  57. E. Chiessi, F. Cavalieri, and G. Paradossi, J. Phys. Chem. B 109 (16), 8091 (2005).

  58. V. J. Klenin, Thermodynamics of Systems Containing Flexible-Chain Polymers (Elsevier, Amsterdam, 1999).

    Google Scholar 

  59. S. Ogawa, M. Koga, and S. Osanai, Chem. Phys. Lett. 480, 86 (2009).

    Article  CAS  Google Scholar 

  60. T. Inada and S.-S. Lu, Chem. Phys. Lett. 394, 361 (2004).

    Article  CAS  Google Scholar 

  61. P. M. Naullage and V. Molinero, J. Am. Chem. Soc. 142, 4356 (2020).

    Article  CAS  PubMed  Google Scholar 

  62. S. Wu, Z. He, J. Zang, Sh. Jin, Z. Wang, J. Wang, Y. Yao, and J. Wang, Sci. Adv. 5, 1 (2019).

    Google Scholar 

  63. S. K. Reddy, S. C. Straight, P. Bajaj, C. H. Pham, M. Riera, D. R. Moberg, M. A. Morales, C. Knight, A. W. Gotz, and F. Paesani, J. Chem. Phys. 145, 194504-1 (2016).

    Article  PubMed  CAS  Google Scholar 

  64. A. V. Khakhalin, O. N. Gradoboeva, and Ya. N. Shirshov, Moscow Univ. Phys. Bull. 67 (6), 537 (2012).

    Google Scholar 

  65. J. Liu, X. He, and J. Z. H. Zhang, Phys. Chem. Chem. Phys. 19, 11931 (2017).

    Article  CAS  PubMed  Google Scholar 

  66. A. Kholmanskiy, J. Mol. Struct. 1989, 124 (2015).

    Article  CAS  Google Scholar 

  67. D. Laage, G. Strinemann, and J. T. Hynes, Sci. China: Phys., Mech. Astron. 53 (6), 1068 (2010).

    Article  CAS  Google Scholar 

  68. P. M. Naullage and V. Molinero, J. Am. Chem. Soc. 142, 4356 (2020).

    Article  CAS  PubMed  Google Scholar 

  69. L. Weng, S. L. Stott, and M. Toner, Langmuir 34 (17), 5116 (2017).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. V. I. Lozinsky and L. G. Damshkaln, J. Appl. Polym. Sci. 77, 2017 (2000).

    Article  CAS  Google Scholar 

  71. Y. Tamai and H. Tanaka, Phys. Rev. E: 59 (5), 5647 (1999).

    Article  CAS  Google Scholar 

  72. S. K. Mallapragada and N. A. Peppas, J. Polym. Sci., Polym. Phys. Ed. 34, 1339 (1996).

    Article  CAS  Google Scholar 

  73. W. Li, F. Xue, and R. Cheng, Polymer 46, 12026 (2005).

    Article  CAS  Google Scholar 

  74. L. Shi and Q. Han, Mol. Simul. 44 (17), 1363 (2018).

    Article  CAS  Google Scholar 

  75. F. Auriemma, C. De Rosa, and R. Triolo, Macromolecules 39, 9429 (2006).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The experiments on the formation of poly(vinyl alcohol) hydrogels, investigation of their structure and the effect of thermal treatment on the properties were performed at the Institute of Organoelement Compounds, Russian Academy of Sciences. Calculations and interpretation of the transitions in the thermomechanical curves were performed at Moscow State University of Civil Engineering.

Authors are grateful to A.G. Bogdanov (MSU) for the assistance in the scanning electron microscopy imaging of the objects.

Funding

This study was financially supported by the Ministry of Science and Higher Education of Russian Federation (project “Theoretical-Experimental Engineering of Novel Composite Materials for Safe Maintenance of Buildings and Constructions Under Conditions of Technogenic and Biogenic Hazards,” no. FSWG-2020-0007) (MSUCE) and the State Contact (no. 0085-2019-0004, IOC RAS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Kurskaya.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Karpushkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurskaya, E.A., Podorozhko, E.A., Afanasyev, E.S. et al. Trends in Cryotropic Gelation of Semidilute Aqueous Solutions of Poly(vinyl alcohol) with Different Thermal History. Polym. Sci. Ser. A 64, 19–37 (2022). https://doi.org/10.1134/S0965545X22010060

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X22010060

Navigation