Skip to main content
Log in

Internal Friction in an Epoxy Polymer and a Fiberglass Reinforced Plastic Based on It

  • STRUCTURE AND PROPERTIES
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

The internal friction spectra of cured epoxy T-107 and a fiberglass reinforced plastic based on it are studied. In the temperature dependence of mechanical losses, β and γ relaxation maxima are found below the glass transition temperature with activation energies of Eβ = 0.30 ± 0.05 eV and Eγ = 0.18 ± 0.04 eV, respectively. The first maximum is associated with the vibrations of the defective oxygen atoms of the epoxy groups of the polymer network, and the second maximum is attributed to the vibrations of the lateral OH groups of the main polymer network. The internal friction of the epoxy polymer in the region of α relaxation process has been studied. In this region, two segments with an intersection point at the glass transition temperature are seen in the temperature dependence of the internal friction in coordinates lnQ−1 vs. 1/T. The high temperature segment of the internal friction background is used to estimate the energies of migration and formation of vacancy-like defects in the amorphous matrix of glass reinforced plastics, which are associated with delocalized oxygen and equal to Em = 0.72 ± 0.05 eV and Ev = 1.41 ± 0.06 eV, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. T. V. Tropin, Ju. W. P. Schmelzer, and V. L. Aksenov, Phys.-Usp. 59, 42 (2016).

    Article  Google Scholar 

  2. D. V. Novikov, Phys. Solid State 63, 154 (2021).

    Article  CAS  Google Scholar 

  3. S. V. Nemilov and Yu. S. Balashov, Glass Phys. Chem. 42, 119 (2016).

    Article  CAS  Google Scholar 

  4. E. N. Kablov, Herald Russ. Acad. Sci. 82, 158 (2012).

    Article  Google Scholar 

  5. E. V. Prut, L. A. Zhorina, D. D. Novikov, A. Y. Gorenberg, L. V. Vladimirov, and A. A. Berlin, Mendeleev Commun. 27, 405 (2017).

    Article  CAS  Google Scholar 

  6. V. A. Zhuikov, Y. V. Zhuikova, T. K. Makhina, V. L. Myshkina, G. A. Bonartseva, A. P. Bonartsev, A. Rusakov, A. Useinov, V. V. Voinova, A. A. Berlin, and A. L. Iordanskii, Polymers 12, 728 (2020).

    Article  CAS  Google Scholar 

  7. I. A. Timoshkin, V. V. Aleshkevich, E. S. Afanas’eva, B. A. Bulgakov, A. V. Babkin, A. V. Kepman, and V. V. Avdeev, Polym. Sci., Ser. C 62, 172 (2020).

    Article  CAS  Google Scholar 

  8. N. N. Trofimov, M. Z. Kanovich, E. M. Kartashov, V. I. Natrusov, A. T. Ponomarenko, V. G. Shevchenko, V. I. Sokolov, I. D. Simonov-Emel’yanov, Physics of Composite Materials, Two Volumes (Mir, Moscow, 2005) [in Russian].

  9. G. M. Bartenev, Polym. Sci., Ser. B 43, 202 (2001).

    Google Scholar 

  10. S. A. Mazurina, I. D. Simonov-Emel’yanov, V. A. Lomovskoy, M. R. Kiselev, and N. Y. Konstantinov, Inorg. Mater.: Appl. Res. 10, 174 (2019).

    Article  Google Scholar 

  11. G. M. Bartenev and A. G. Barteneva, Relaxation Properties of Polymers (Khimiya, Moscow, 1992) [in Russian].

    Google Scholar 

  12. T. R. Aslamazova, V. I. Zolotarevskii, V. A. Kotenev, N. Y. Lomovskaya, V. A. Lomovskoi, and A. Y. Tsivadze, Prot. Met. Phys. Chem. Surf. 54, 1081 (2018).

    Article  CAS  Google Scholar 

  13. V. A. Lomovoskoi, N. A. Abaturova, N. Yu. Lomovskaya, O. A. Khlebnikova, and T. B. Galushko, Polym. Sci., Ser. A 60, 284 (2018).

    Article  CAS  Google Scholar 

  14. G. Bartenev, L. A. Shelkovnikova, and L. A. Akopyan, Polym. Mech. 9, 133 (1973).

    Article  Google Scholar 

  15. Yu. E. Kalinin, A. T. Kosilov, O. V. Ovdak, A. M. Kudrin, O. A. Karaeva, M. A. Kashirin, and D. Ya. Degtyarev, Tech. Phys. 64, 535 (2019).

    Article  CAS  Google Scholar 

  16. Epoxy Prepreg. https://www.inumit.ru/img/file/t107.pdf. Cited 2021.

  17. S. A. Gridnev, I. I. Popov, M. A. Kashirin, and A. I. Bocharov, J. Alloys Compd. 889, 161764 (2021).

    Article  Google Scholar 

  18. V. A. Rabinovich and Z. Ya. Khavin, Concise Handbook of Chemistry (Khimiya, Leningrad, 1978) [in Russian].

    Google Scholar 

  19. G. M. Bartenev, Structure and Relaxation Properties of Polymers (Khimiya, Moscow, 1979) [in Russian].

    Google Scholar 

  20. V. A. Lomovskoi, N. A. Abaturova, N. Y. Lomovskaya, T. B. Galushko, and V. I. Zolotarevskii, Polym. Sci., Ser. A 61, 491 (2019).

    Article  CAS  Google Scholar 

  21. G. M. Bartenev and V. A. Lomovskoi, Polym. Sci., Ser. A 44, 841 (2002).

    Google Scholar 

  22. V. A. Lomovskoi, Tonkie Khim. Tekhnol. 10 (3), 8 (2015).

    Google Scholar 

  23. A. S. Novick and B. S. Berry, Anelastic Relaxation in Crystalline Solids (Academic Press, New York; London, 1972).

    Google Scholar 

  24. D. S. Sanditov, J. Exp. Theor. Phys. 123, 429 (2016).

    Article  CAS  Google Scholar 

  25. D. S. Sanditov and M. I. Ojovan, Phys. -Usp. 62, 111 (2019).

    Article  CAS  Google Scholar 

  26. D. S. Sanditov, Dokl. Phys. Chem. 464, 255 (2015).

    Article  CAS  Google Scholar 

  27. I. V. Zolotukhin, Yu. E. Kalinin, and O. V. Stognei, New Directions in Physical Materials Science (Voronezhskii Gos. Univ., Voronezh, 2000) [in Russian].

    Google Scholar 

  28. D. S. Sanditov and A. A. Mashanov, Polym. Sci., Ser. A 61, 119 (2019).

    Article  CAS  Google Scholar 

  29. I. V. Zolotukhin and Yu. E. Kalinin, Fiz. Tverd. Tela 37, 536 (1995).

    CAS  Google Scholar 

  30. Y. E. Kalinin and B. M. Darinskii, Met. Sci. Heat Treat 54, 221 (2012).

    Article  CAS  Google Scholar 

  31. Chemical Bond Dissociation Energy: Ionizating Potential and Electron Affinity, Ed. by V. N. Kondrat’ev (Nauka; Inst. Khim. Fiz.; Inst. Vysokikh Temp., Moscow, 1974) [in Russian].

  32. R. A. De Souza, in Resistive Switching from Fundamentals of Nanoionic Redox Processes to Memristive Device Applications, Ed. by D. Ielmini and R. Waser (Wiley, Weinheim, 2016), p. 125.

    Google Scholar 

  33. A. Mehonic, A. J. Kenyon, A. L. Shluger, D. Gao, I. Valov, E. Miranda, D. Ielmini, A. Bricalli, E. Ambrosi, C. Li, J. J. Yang, and Q. Xia, Adv. Mater. 30, 1801187 (2018).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to V.V. Avdeev and A.V. Kepman for providing the initial components for the preparation of samples and useful discussions, and to A.I. Bocharov for performing experiments on a scanning electron microscope.

Funding

This study was financially supported by the Ministry of Science and Higher Education within the basic part of State assignment (project no. FZGM-2020-007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. E. Kalinin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by O. Kadkin

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinin, Y.E., Kudrin, A.M., Ovdak, O.V. et al. Internal Friction in an Epoxy Polymer and a Fiberglass Reinforced Plastic Based on It. Polym. Sci. Ser. A 64, 1–9 (2022). https://doi.org/10.1134/S0965545X22010047

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X22010047

Navigation