Skip to main content
Log in

Internal Friction in Glass Fiber- and Carbon Fiber-Reinforced Composites with a T-107 Matrix

  • PHYSICAL SCIENCE OF MATERIALS
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

The temperature and amplitude dependences of internal friction in hybrid composites consisting of unidirectional carbon fibers and glass tissues in a T-107 molten epoxy matrix have been studied. From the high-frequency portion of the internal friction background with regard to its low-frequency one, the energy of formation and migration of vacancy-like defects in an amorphous matrix of glass fiber- and carbon fiber-reinforced composites has been estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. E. N. Kablov, Aviats. Mater. Tekhnol., No. 1, 3 (2015).

  2. Polymer Composite Materials: Structure, Properties, Technology. Study Guide, Ed. by A. A. Berlin (Professiya, St. Petersburg, 2009).

    Google Scholar 

  3. A. O. Kurnosov, D. A. Mel’nikov, and I. I. Sokolov, Tr. VIAM, No. 8 (2015). https://doi.org/10.18577/2307-6046-2015-0-8-8-8

  4. P. N. Timoshkov, A. V. Khrul’kov, and L. N. Yazvenko, Tr. VIAM, No. 6 (2017). https://doi.org/10.18577/2307-6046-2017-0-6-7-7

  5. A. S. Nowick and B. S. Berry, Anelastic Relaxation in Crystalline Solids (Academic, 1972).

    Google Scholar 

  6. G. M. Bartenev and Yu. V. Zelenev, Physics and Mechanics of Polymers (Vysshaya Shkola, Moscow, 1983).

    Google Scholar 

  7. V. A. Sagomonova, V. I. Kislyakova, T. Yu. Tyumeneva, and V. A. Bol’shakov, Tr. VIAM, No. 10 (2015). https://doi.org/10.18577/2307-6046-2015-0-10-10-10

  8. V. A. Sagomonova and Yu. V. Sytyi, Tr. VIAM, No. 11 (2013).

  9. http://www.inumit.ru/img/file/t107.pdf.

  10. http://www.fpc.com.tw/fpcwuploads/pdocument/pdocument_141202152439.pdf.

  11. GOST 19170-2001. Fibre Glass. Constructive Woven Fabrics. Specifications (2002).

  12. O. V. Ovdak, Yu. E. Kalinin, A. M. Kudrin, O. A. Karaeva, and D. Ya. Degtyarev, Inorg. Mater.: Appl. Res. 9, 108 (2018).

    Article  Google Scholar 

  13. M. S. Blanter, I. S. Golovin, S. A. Golovin, A. A. Il’in, and V. I. Sarrak, Mechanical Spectroscopy of Metallic Materials (MIA, Moscow, 1994).

    Google Scholar 

  14. A. V. Mozgovoi, L. R. Vishnyakov, B. N. Sinaiskii, O. P. Yaremenko, and V. P. Moroz, Nov. Mater. Tekhnol. Metall. Mashinostr., No. 2, 41 (2012).

  15. I. V. Zolotukhin and Yu. E. Kalinin, Fiz. Tverd. Tela 37, 536 (1995).

    Google Scholar 

Download references

FUNDING

This study was supported by the Ministry of Education and Science of the Russian Federation, project no. 3.1867.2017/4.6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. E. Kalinin.

Additional information

Translated by V. Isaakyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalinin, Y.E., Kosilov, A.T., Ovdak, O.V. et al. Internal Friction in Glass Fiber- and Carbon Fiber-Reinforced Composites with a T-107 Matrix. Tech. Phys. 64, 535–539 (2019). https://doi.org/10.1134/S1063784219040121

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784219040121

Navigation