Skip to main content
Log in

Formation of Fibril-Like Structures in Thin Polyaniline Films during Redoping with a Mixture of Dodecylbenzenesulfonic Acid and N-Methyl-2-pyrrolidone

  • STRUCTURE AND PROPERTIES
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

The features of the morphology and properties of thin films of polyaniline redoped with a mixture of dodecylbenzenesulfonic acid and N-methylpyrrolidone are studied. The films have a developed morphology formed by chaotically distributed fibril-like structures. It is shown that formation of the developed morphology is accompanied by an increase in the dopant concentration, an increase in the specific electrical conductivity of the film, and a decrease in the band gap energy of the polymer. Formation of the fibrillar structure of the polyaniline film is explained by the self-assembly of doped polyaniline molecules suspended in solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. J. Xing, M. Liao, C. Zhang, M. Yin, D. Li, and Y. Song, Phys. Chem. Chem. Phys. 19, 14030 (2017).

    Article  CAS  Google Scholar 

  2. S. Iqbal and S. Ahmad, J. Ind. Eng. Chem. 60, 53 (2018).

    Article  CAS  Google Scholar 

  3. Y. Noskov, S. Mikhaylov, P. Coddeville, J.-L. Wojkiewicz, and A. Pud, Synth. Met. 217, 266 (2016).

    Article  CAS  Google Scholar 

  4. H. Wang, S. Yi, X. Pu, and C. Yu, ACS Appl. Mater. Interfaces 7, 9589 (2015).

    Article  CAS  Google Scholar 

  5. N. R. Tanguy, M. Thompson, and N. Yan, Sens. Actuators, B 257, 1044 (2018).

    Article  CAS  Google Scholar 

  6. E. J. Jelmy, S. Ramakrishnan, M. Rangarajan, and N. K. Kothurkar, Bull. Mater. Sci. 36, 37 (2013).

    Article  CAS  Google Scholar 

  7. L. Horta-Romarís, M. V. González-Rodríguez, A. Lasagabástera, F. Rivadulla, and M.-J. Abad, Synth. Met. 243, 44 (2018).

    Article  Google Scholar 

  8. S. Ghosh, Chem. Phys. Lett. 226, 344 (1994).

    Article  CAS  Google Scholar 

  9. A. J. Epstein, Synth. Met. 65, 103 (1994).

    Article  Google Scholar 

  10. C. M. S. Izumi, D. C. Rodrigues, and M. L. A. Temperini, Synth. Met. 160, 2552 (2010).

    Article  CAS  Google Scholar 

  11. D. Das, A. Datta, and A. Q. Contractor, J. Phys. Chem. B 118, 12993 (2010).

    Article  Google Scholar 

  12. R. Taş, M. Gülen, M. Can, and S. Sönmezoğlu, Synth. Met. 212, 75 (2016).

    Article  Google Scholar 

  13. K. Krukiewicz and A. Katunin, Synth. Met. 214, 45 (2016).

    Article  CAS  Google Scholar 

  14. M. Trchová, Z. Morávková, I. Šeděnková, and J. Stejskal, Chem. Pap. 66, 415 (2012).

    Article  Google Scholar 

  15. M. Trchová and J. Stejskal, Pure Appl. Chem. 83, 1803 (2011).

    Article  Google Scholar 

  16. Y.-W. Lin and T.-M. Wu, Compos. Sci. Technol. 69, 2559 (2009).

    Article  CAS  Google Scholar 

  17. M. Ibrahim and E. Koglin, Acta Chim. Slov. 52, 159 (2005).

    Google Scholar 

  18. N. Karaoğlan and C. Bindal, Eng. Sci. Technol. Int. J. 21, 1152 (2018).

    Google Scholar 

  19. T. M. Kabomo and M. S. Scurrell, Polym. Adv. Technol. 27, 1195 (2016).

    Article  CAS  Google Scholar 

  20. M. Ayad and S. Zaghlol, Chem. Eng. J. 204–206, 79 (2012).

    Article  Google Scholar 

  21. S. Ashokan, V. Ponnuswamy, P. Jayamurugan, J. Chandrasekaran, and Y. V. Subba Rao, Superlattices Microstruct. 85, 282 (2015).

    Article  CAS  Google Scholar 

  22. R. Dubey, D. Dutta, V. K. Yadav, T. C. Shami, and K. U. B. Rao, Synth. Met. 160, 1627 (2010).

    Article  CAS  Google Scholar 

  23. M. R. Majidi, L. A. P. Kane-Maguire, and G. G. G. Wallace, Polymer 37, 359 (1996).

    Article  CAS  Google Scholar 

  24. P. Chutia and A. Kumar, Phys. B: Condens. Matter 436, 200 (2014).

    Article  CAS  Google Scholar 

  25. Y. Tao, J. Li, A. Xie, S. Li, P. Chen, L. Ni, and Y. Shen, Chem. Commun. 50, 12757 (2014).

    Article  CAS  Google Scholar 

  26. A. S. Junaid, T. Shaochun, and M. Xiangkang, Sci. Rep. 7, 4403 (2017).

    Article  Google Scholar 

  27. M. Wan and J. Yang, J. Appl. Polym. Sci. 55, 399 (1995).

    Article  CAS  Google Scholar 

Download references

Funding

This work was carried out in accordance with the State Assignment for the Omsk Scientific Center of the Siberian Branch of the Russian Academy of Sciences within the framework of project “Investigation of physical processes in heterostructures based on new functional nanomaterials and nanocomposites for microsensors, chemical current sources and medical applications.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Lobov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lobov, I.A., Davletkildeev, N.A., Sokolov, D.V. et al. Formation of Fibril-Like Structures in Thin Polyaniline Films during Redoping with a Mixture of Dodecylbenzenesulfonic Acid and N-Methyl-2-pyrrolidone. Polym. Sci. Ser. A 63, 100–105 (2021). https://doi.org/10.1134/S0965545X21020073

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X21020073

Navigation