Skip to main content
Log in

Investigation of Rotational Molding Process of Polymeric Nanocomposites Containing Nanoclay Using a Taguchi-MCDM Couple Method

  • COMPOSITES
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

In this study, the effects of nanoclay content, rotational speed, and processing temperature on the mechanical properties and thickness uniformity of produced polymeric samples are investigated using rotational molding process. For this purpose, the design of experiments is used according to the L9 orthogonal array of Taguchi approach. Tensile strength, Young’s modulus, hardness, and standard deviation of thickness are considered as different criteria. The results indicate that increasing temperature increases tensile strength and Young’s modulus of nanocomposite samples by 21 and 31%, respectively. Also, the hardness of specimens is increased almost 6% by increasing nanoclay. The thickness uniformity of samples is also improved significantly by increasing nanoclay and processing temperature. Finally, a simultaneous decision analysis is performed and the best sample is selected with respect to the considered criteria using multi-criteria decision making methods. The results illustrate that nanocomposite samples with 1 wt % nanoclay and produced in rotational speed of 23 rpm and temperature of 205°C are the best samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. I. M. Ward, and J. Sweeney, Mechanical Properties of Solid Polymers (John Wiley and Sons, Chichester, 2012).

    Book  Google Scholar 

  2. R. Anjana, A. K. Krishnan, T. S. Goerge, and K. E. George, Polym. Bull. 71, 315 (2014).

    Article  CAS  Google Scholar 

  3. M. Balachandran, S. Devanathan, R. Muraleekrishnan, and S. S. Bhagawan, Mater. Des. 35, 854 (2012).

    Article  CAS  Google Scholar 

  4. I. Greenfeld and H. D. Wagner, Nanocomposites 1, 3 (2015).

    Article  CAS  Google Scholar 

  5. S. M. Shishavan, T. Azdast, and S. R. Ahmadi, Mater. Design 58, 527 (2014).

    Article  Google Scholar 

  6. I. H. Tseng, J. C. Chang, S. L. Huang, and M. H. Tsai, Polym. Int. 62, 827 (2013).

    Article  CAS  Google Scholar 

  7. M. R. Ayatollahi, S. Shadlou, M. M. Shokrieh, and M. Chitsazzadeh, Polym. Test. 30, 548 (2011).

    Article  CAS  Google Scholar 

  8. P. Song, Z. Cao, Y. Cai, L. Zhao, Z. Fang, and S. Fu, Polymer 52, 4001 (2011).

    Article  CAS  Google Scholar 

  9. B. K. Deka, M. Mandal, and T. K. Maji, Ind. Eng. Chem. Res. 51, 11881 (2012).

    Article  CAS  Google Scholar 

  10. C. Bora and S. K. Dolui, Polymer 53, 923 (2012).

    Article  CAS  Google Scholar 

  11. Y. Dong and D. Bhattacharyya, Composites, Part A 39, 1177 (2008).

    Article  Google Scholar 

  12. R. Pfaendner, Polym. Degrad. Stab. 95, 369 (2010).

    Article  CAS  Google Scholar 

  13. E. Zohar, S. Baruch, M. Shneider, H. Dodiuk, S. Kenig, H. D. Wagner, A. Zak, A. Moshkovith, L. Rapoport, and R. Tenne, Sens. Transducers J. 12, 53 (2011).

    CAS  Google Scholar 

  14. P. Esmaili, T. Azdast, A. Doniavi, R. Hasanzadeh, S. Mamaghani, and R. E. Lee, J. Sci. Technol. Compos. 2 (3), 67 (2015).

    Google Scholar 

  15. A. Navidfar, T. Azdast, and A. Karimzad Ghavidel, J. Appl. Polym. Sci. 133, 43738 (2016).

    Article  Google Scholar 

  16. T. Asiabi, T. Azdast, and S. M. Shishavan, in Proceeding of 7th Students Conference on Mechanical Engineering, Tehran, Iran, 2013 (Tehran, 2013).

  17. M. M. Zamani, A. Fereidoon, and A. Sabet, Iran. Polym. J. 21, 887 (2012).

    Article  CAS  Google Scholar 

  18. K. Mezghani, M. Farooqui, S. Furquan, and M. Atieh, Mater. Lett. 65, 3633 (2011).

    Article  CAS  Google Scholar 

  19. B. I. Chaudhary, E. Takács, and J. Vlachopoulos, Polym. Eng. Sci. 42, 1359 (2002).

    Article  CAS  Google Scholar 

  20. W. Q. Wang and M. Kontopoulou, Polym. Eng. Sci. 44, 1662 (2004).

    Article  CAS  Google Scholar 

  21. F. G. Torres and C. L. Aragon, Polym. Test. 25, 568 (2006).

    Article  CAS  Google Scholar 

  22. S. J. Liu and K. M. Peng, Polym. Eng. Sci. 50, 1457 (2010).

    Article  CAS  Google Scholar 

  23. M. Daryadel, T. Azdast, R. Hasanzadeh, and S. Molani, J. Appl. Polym. Sci. 135, 46098 (2018).

    Article  Google Scholar 

  24. R. Hasanzadeh, T. Azdast, A. Doniavi, S. Babazadeh, R. E. Lee, M. Daryadel, and S. M. Shishavan, Int. J. Eng., Trans. A 30, 143 (2017).

    Google Scholar 

  25. V. Modanloo, R. Hasanzadeh, and P. Esmaili, Int. J. Eng., Trans. A 29, 103 (2016).

    Google Scholar 

  26. A. Doniavi, S. Babazadeh, T. Azdast, and R. Hasanzadeh, J. Elastomers Plast. 49, 498 (2017).

    Article  CAS  Google Scholar 

  27. M. W. Dewan, M. K. Hossain, M. Hosur, and S. Jeelani, J. Appl. Polym. Sci. 128, 4110 (2013).

    Article  CAS  Google Scholar 

  28. T. L. Saaty, Int. J. Serv. Sci. 1, 83 (2008).

    Google Scholar 

  29. H. Çalışkan, B. Kurşuncu, C. Kurbanoğlu, and Ş. Y. Güven, Mater. Des. 45, 473 (2013).

    Article  Google Scholar 

  30. N. Barhoumi, A. Maazouz, M. Jaziri, and R. Abdelhedi, eXPRESS Polym. Lett. 7, 76 (2013).

    Article  CAS  Google Scholar 

  31. E. Harkin-Jones and R. Crawford, Adv. Polym. Technol. 15, 71 (1996).

    Article  CAS  Google Scholar 

  32. R. Pop-Iliev, K. H. Lee, and C. B. Park, Journal of Cellular Plastics 42, 139 (2006).

    Article  CAS  Google Scholar 

  33. M. Kontopoulou, M. Bisaria, and J. Vlachopoulos, Int. Polym. Process. 12, 165 (1997).

    Article  CAS  Google Scholar 

  34. S. J. Liu and C. H. Yang, Adv. Polym. Technol. 20, 108 (2001).

    Article  CAS  Google Scholar 

  35. E. Harkin-Jones and R. J. Crawford, Polym. Eng. Sci. 36, 615 (1996).

    Article  CAS  Google Scholar 

  36. M. C. Cramez, M. J. Oliveira, and R. J. Crawford, J. Mater. Sci. 36, 2151 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahsa Daryadel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahsa Daryadel, Doniavi, A., Azdast, T. et al. Investigation of Rotational Molding Process of Polymeric Nanocomposites Containing Nanoclay Using a Taguchi-MCDM Couple Method. Polym. Sci. Ser. A 61, 691–700 (2019). https://doi.org/10.1134/S0965545X19050055

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X19050055

Navigation