Skip to main content
Log in

The Effect of Cationic Polylysine on the Release of an Encapsulated Substance from pH-Sensitive Anionic Liposomes

  • MEDICAL POLYMERS
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract—

The formation of complexes from anionic liposomes with a pH-sensitive molecular switch (flipid) and a cationic polypeptide (polylysine) embedded in the membrane with a degree of polymerization of 90, 660, and 1360 was investigated. Liposomes in the complex retain their integrity in a buffer solution with a pH of 7; The resulting complexes are resistant to dissociation in a physiological solution containing 0.15 M NaCl. Lowering the pH of the solution to 5 causes the formation of defects in the lipid bilayer by changing the conformation of the flipid, which leads to the release of the encapsulated substance from the liposomes into the surrounding solution. In this case, complexation increases both the rate of release of the encapsulated substance and the amount of the substance moving from the liposomes to the external solution. The results obtained are of interest for encapsulation and controlled drug delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Notes

  1. A basic molar concentration of the polymer is used in the work, i.e., in moles of monomer units per liter of solution.

REFERENCES

  1. T. M. Allen and P. R. Cullis, Adv. Drug Delivery Rev. 65, 36 (2013).

    Article  CAS  Google Scholar 

  2. L. Sercombe, T. Veerati, F. Moheimani, S. Y. Wu, A. K. Sood, and S. Hua, Front. Pharmacol. 6, 1 (2015).

    Article  CAS  Google Scholar 

  3. S. K. Kundu, A. R. Sharma, S.-S. Lee, G. Sharma, DossC. G. Priya, S. Yagihara, D. Y. Kim, Ju-S. Nam, and C. Chakraborty, BioMed. Res. Int. 2014, 15 (2014).

    Google Scholar 

  4. G. Bozzuto and A. Molinari, Int. J. Nanomed. 10, 975 (2015).

    Article  CAS  Google Scholar 

  5. N. Atbiaw, E. Aman, B. Dessalegn, O. Masrie, D. Debalke, G. Enbiyale, A. Yirga, G. Tekilu, A. Abrhaley, F. Mitku, Pharm. Pharmacol. Int. J. 6, 183 (2018).

    Google Scholar 

  6. A. M. S. Simão, M. Bolean, T. A. C. Cury, R. G. Stabeli, R. Itri, and P. Ciancaglini, Biophys. Rev. 7, 391 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. L. P. Mendes, J. M. F. Delgado, A. D. A. Costa, M. S. Vieira, P. L. Benfica, E. M. Lima, and M. C. Valadares, Toxicol. Vitro 29, 1268 (2015).

    Article  CAS  Google Scholar 

  8. Liposomes: A Principal Approach. Practical Approach Series, Ed. by V. Torchilin and V. Weissig (Oxford Univ. Press, Oxford; New York, 2003), Vol. 264.

    Google Scholar 

  9. Y. Xia, M. Fang, J. Dong, C. Xu, Z. Liao, P. Ning, and Q. Zeng, Colloids Surf., B 170, 514 (2018).

    Article  CAS  Google Scholar 

  10. Y. Lee and D. H. Thompson, WIREs Nanomed. Nanobiotechnol. 9, 1 (2017).

    Google Scholar 

  11. H. Karanth and R. S. Murthy, J. Pharm. Pharmacol. 59, 469 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. A. Asokan and M. J. Cho, Biochim. Biophys. Acta 1611, 151 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Y. Kato, S. Ozawa, C. Miyamoto, Y. Maehata, A. Suzuki, T. Maeda, and Y. Baba, Cancer Cell. Int 13, 89 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. G. Tzanis, M. Bonou, G. Benetos, S. Biliou, S. Liatis, C. Kapelios, K. Toutouzas, D. Tousoulis, and J. Barbetseas, Int. J. Cardiol. 262, 20 (2018).

    Article  CAS  PubMed  Google Scholar 

  15. P. Singh, S. Choudhury, S. Kulanthaivel, D. Bagchi, I. Banerjee, S. A. Ahmed, and S. K. Pal, Colloids Surf., B 162, 202 (2018).

    Article  CAS  Google Scholar 

  16. Y. Guo, Y. Zhang, J. Ma, Q. Li, Y. Li, X. Zhou, D. Zhao, H. Song, Q. Chen, and X. Zhu, J. Controlled Release 272, 145 (2018).

    Article  CAS  Google Scholar 

  17. A. Jain and S. K. Jain, Curr. Drug Targets 19, 259 (2018).

    CAS  PubMed  Google Scholar 

  18. B. Brazdova, N. Zhang, V. V. Samoshin, and X. Guo, Chem. Commun. 39, 4774 (2008).

    Article  CAS  Google Scholar 

  19. N. M. Samoshina, X. Liu, B. Brazdova, A. H. Franz, V. V. Samoshin, and X. Guo, Pharmaceutics 3, 379 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. V. V. Samoshin, Biomol. Concepts 5, 131 (2014).

    Article  CAS  PubMed  Google Scholar 

  21. A. V. Samoshin, I. S. Veselov, V. A. Chertkov, A. A. Yaroslavov, G. V. Grishina, N. M. Samoshina, and V. V. Samoshin, Tetrahedron Lett. 54, 5600 (2013).

    Article  CAS  Google Scholar 

  22. A. A. Yaroslavov, A. V. Sybachin, O. V. Zaborova, V. A. Migulin, V. V. Samoshin, M. Ballauff, E. Kesselman, J. Schmidt, Y. Talmon, and F. M. Menger, Nanoscale 7, 1635 (2015).

    Article  CAS  PubMed  Google Scholar 

  23. A. V. Sybachin, O. V. Zaborova, K. M. Imelbaeva, V. V. Samoshin, V. A. Migulin, F. A. Plamper, and A. A. Yaroslavov, Mendeleev Commun. 26, 276 (2016).

    Article  CAS  Google Scholar 

  24. A. V. Samoshin, I. S. Veselov, L. Huynh, A. K. Shestakova, V. A. Chertkov, G. V. Grishina, N. M. Samoshina, and V. V. Samoshin, Tetrahedron Lett. 52, 5375 (2011).

    Article  CAS  Google Scholar 

  25. V. V. Samoshin, B. Brazdova, V. A. Chertkov, D. E. Gremyachinskiy, A. K. Shestakova, E. K. Dobretsova, L. P. Vatlina, J. Yuan, and H.‑J. Schneider, ARKIVOC 2005, 129 (2005).

    Article  Google Scholar 

  26. V. V. Samoshin, V. A. Chertkov, D. E. Gremyachinskiy, E. K. Dobretsova, A. K. Shestakova, and L. P. Vatlina, Tetrahedron Lett. 45, 7823 (2004).

    Article  CAS  Google Scholar 

  27. T. H. Chou, C. H. Liang, Y. C. Lee, and L. H. Yeh, Phys. Chem. Chem. Phys. 16, 1545 (2014).

    Article  CAS  PubMed  Google Scholar 

  28. A. A. Efimova, A. V. Sybachin, and A. A. Yaroslavov, Polym. Sci., Ser. C 53, 89 (2011).

    Article  CAS  Google Scholar 

  29. A. A. Yaroslavov, A. V. Sybachin, O. V. Zaborova, D. V. Pergushov, A. B. Zezin, N. S. Melik-Nubarov, F. A. Plamper, A. H. Müller, and F. M. Menger, Macromol. Biosci 14, 491 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. C. E. Blanchet, A. Spilotros, F. Schwemmer, M. A. Graewert, A. Kikhney, C. M. Jeffries, D. Franke, D. Mark, R. Zengerle, F. Cipriani, S. Fiedler, M. Roessle, and D. I. Svergun, J. Appl. Crystallogr. 48, 431 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. P. V. Konarev, V. V. Volkov, A. V. Sokolova, M. H. J. Koch, and D. I. Svergun, J. Appl. Crystallogr. 36, 1277 (2003).

    Article  CAS  Google Scholar 

  32. D. I. Svergun, J. Appl. Crystallogr. 25, 495 (1992).

    Article  CAS  Google Scholar 

  33. A. V. Sybachin, A. A. Efimova, E. A. Litmanovich, F. M. Menger, and A. A. Yaroslavov, Langmuir 23, 10034 (2007).

    Article  CAS  PubMed  Google Scholar 

  34. G. Petzold and S. Schwarz, Adv. Polym. Sci. 256, 25 (2014).

    Article  CAS  Google Scholar 

  35. F. Bordi, C. Cametti, M. Diociaiuti, D. Gaudino, T. Gili, and S. Sennato, Langmuir 20, 5214 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. M. Rinaudo, F. Quemeneur, and B. Pepin-Donat, Int. J. Polym. Anal. Charact. 17, 1 (2012).

    Article  CAS  Google Scholar 

  37. I. Szilagyi, G. Trefalt, A. Tiraferri, P. Maroni, and M. Borkovec, Soft Matter 10, 2479 (2014).

    Article  CAS  PubMed  Google Scholar 

  38. I. Juranić, Croat. Chem. Acta 87, 343 (2014).

    Article  Google Scholar 

  39. O. V. Ivashkov, A. V. Sybachin, A. A. Efimova, D. V. Pergushov, V. N. Orlov, H. Schmalz, and A. A. Yaroslavov, ChemPhysChem 16, 2849 (2015).

    Article  CAS  PubMed  Google Scholar 

  40. A. A. Yaroslavov, A. A. Efimova, A. V. Sybachin, V. A. Izumrudov, V. V. Samoshin, and I. I. Potemkin, Colloid J. 73, 430 (2011).

    Article  CAS  Google Scholar 

  41. G. B. Khomutov, V. P. Kim, Y. A. Koksharov, K. V. Potapenkov, A. A. Parshintsev, E. S. Soldatov, N. N. Usmanov, A. M. Saletsky, A. V. Sybachin, A. A. Yaroslavov, I. V. Taranov, V. A. Cherepenin, and Y. V. Gulyaev, Colloids Surf., A 532, 26 (2017).

    Article  CAS  Google Scholar 

  42. C. Bonechi, S. Martini, L. Ciani, S. Lamponi, H. Rebmann, C. Rossi, and S. Ristori, PLoS One 7, e41438 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. A. A. Yaroslavov, O. Ye. Kuchenkova, I. B. Okuneva, N. S. Melik-Nubarov, N. O. Kozlova, V. I. Lobyshev, F. M. Menger, and V. A. Kabanov, Biochim. Biophys. Acta 1611, 44 (2003).

    Article  CAS  PubMed  Google Scholar 

  44. E. S. Melby, A. C. Mensch, S. E. Lohse, D. Hu, G. Orr, C. J. Murphy, R. J. Hamers, and J. A. Pedersen, Environ. Sci.: Nano 3, 45 (2016).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was financially supported by the Russian Foundation for Basic Research (project codes 18-29-02080 and 16-03-00375).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Sybachin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sybachin, A.V., Lokova, A.Y., Spiridonov, V.V. et al. The Effect of Cationic Polylysine on the Release of an Encapsulated Substance from pH-Sensitive Anionic Liposomes. Polym. Sci. Ser. A 61, 308–316 (2019). https://doi.org/10.1134/S0965545X19030179

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X19030179

Navigation