Skip to main content
Log in

Atom Delocalization and Fluctuation Hole Formation in Amorphous Organic Polymers and Inorganic Glasses

  • STRUCTURE AND PROPERTIES
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

A viewpoint is developed that formation of a hole in amorphous substances corresponds to the atom delocalization process, i.e., its fluctuation limiting shift from the temporary equilibrium state. The molecular-kinetic processes proceeding in liquids and amorphous rigid solids do not depend on the classical van der Waals free volume, “void statistical space between atoms,” but mainly depend on the fluctuation dynamic free volume, which coincides with the fluctuation free volume caused by the atom delocalization. The atom delocalization process (local configuration structural change) plays the key role in the viscous flow of glass-forming liquids. The softening of glasses (at Tg) and their frozen reversible deformation (at 20°C) are characterized by the same molecular mechanism, namely, the atom delocalization. From the same positions as noted above, the effect of plasticity of inorganic glasses and amorphous organic polymers was considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. Ya. I. Frenkel’, Kentic Theory of Liquids (Izd-vo AN SSSR, Moscow; Leningrad, 1945) [in Russian].

    Google Scholar 

  2. S. Glesston, K. Leidler, and G. Eiring, Theory of Absolute Reaction Rate (Izd-vo Inostr. Lit, Moscow, 1948) [in Russian].

    Google Scholar 

  3. D. S. Sanditov and G. M. Bartenev, Physical Properties of Disordered Structures (Nauka, Novosibirsk, 1982) [in Russian].

    Google Scholar 

  4. J. Ferry, Viscoelastic Properties of Polymers (Wiley, New York; London, 1961).

    Book  Google Scholar 

  5. V. G.Rostiashvili, V. I. Irzhak, and B. A. Rozenberg, Glass Transitions in Polymers (Khimiya, Leningrad, 1987) [in Russian].

    Google Scholar 

  6. V. I. Betekhtin, A. G. Kadomtsev, A. Yu. Kipyatkova, and A. M. Glezer, Phys. Solid State 40, 74 (1998).

    Article  Google Scholar 

  7. D. S. Sanditov and S. Sh. Sangadiev, Vysokomol. Soedin., Ser. A 41, 977 (1999).

    CAS  Google Scholar 

  8. J. Bartos, K. Kristiakova, O. Sausa, and J. Kristiak, Polimer 37, 3397 (1996).

    Article  CAS  Google Scholar 

  9. L. A. Moulinier, in Polymer Physics: From Suspensions to Nanocomposites and Beyond, Ed. by L. A. Utracki and A. M. Jameson (Wiley, Hoboken, 2010).

    Google Scholar 

  10. T. Egami, Prog. Mater. Sci. 56, 637 (2011).

    Article  CAS  Google Scholar 

  11. Z. George, J. Appl. Phys. 119, 225104 (2016).

    Article  CAS  Google Scholar 

  12. R. E. Robertson, R. Simha, and J. G. Curro, Macromolecules 17, 911 (1984).

    Article  CAS  Google Scholar 

  13. G. Dlubek, in Polymer Physics: From Suspensions to Nanocomposites and Beyond, Ed. by L. A. Utracki and A. M. Jameson (Wiley, Hoboken, 2010).

    Google Scholar 

  14. M. H. Cohen and G. S. Grest, Phys. Rev. B 20, 1077 (1979).

    Article  CAS  Google Scholar 

  15. M. Di Michiel and A. Kvick, Acta Mater. 53, 1611 (2005).

    Article  CAS  Google Scholar 

  16. D. S. Sanditov, J. Exp. Theor. Phys. 115, 112 (2012).

    Article  CAS  Google Scholar 

  17. D. S. Sanditov and S. S. Badmaev, Glass Phys. Chem. 41, 460 (2015).

    Article  CAS  Google Scholar 

  18. G. L. Slonimskii, A. A. Askadskii, and A. I. Kitaigorodskoi, Vysokomol. Soedin., Ser. A 12, 494 (1970).

    CAS  Google Scholar 

  19. A. V. Lysenko, V. A. Lyakhov, V. A. Khonik, and M. Yu. Yazvitskii, Phys. Solid State 51, 221 (2009).

    Article  CAS  Google Scholar 

  20. M. L. Williams, R. E. Landel, and J. D. Ferry, J. Am. Chem. Soc. 77, 3701 (1955).

    Article  CAS  Google Scholar 

  21. D. S. Sanditov, D. B. Dorzhiev, and Zh. P. Baldanov, Zh. Fiz. Khim. 47, 2990 (1973).

    CAS  Google Scholar 

  22. D. S. Sanditov and I. V. Razumovskaya, Polym. Sci., Ser. A 60, 156 (2018).

    Article  Google Scholar 

  23. D. S. Sanditov, J. Exp. Theor. Phys. 123, 429 (2016).

    Article  CAS  Google Scholar 

  24. S. V. Nemilov, Fiz. Khim. Stekla 4, 662 (1978).

    CAS  Google Scholar 

  25. E. Jenckel, Z. Phys. Chem. (Munich) 184, 309 (1939).

    Google Scholar 

  26. G. Meerlender, Rheol. Acta 6, 359 (1967).

    Article  Google Scholar 

  27. D. S. Sanditov, Dokl. Phys. Chem. 451, 187 (2013).

    Article  CAS  Google Scholar 

  28. D. S. Sanditov and M. I. Ojovan, Phys. B 523, 96 (2017).

    Article  CAS  Google Scholar 

  29. D. S. Sanditov and A. A. Mashanov, Russ. J. Phys. Chem. A 90, 2492 (2016).

    Article  CAS  Google Scholar 

  30. I. V. Razumovskaya and G. M. Bartenev, in Glassy State. Proceedings of V the All-Union Conference on Glassy State (Nauka, Leningrad, 1971), p. 34 [in Russian].

  31. D. S. Sanditov, Dokl. Phys. Chem. 461, 88 (2015).

    Article  CAS  Google Scholar 

  32. D. S. Sanditov, J. Exp. Theor. Phys. 111, 749 (2010).

    Article  CAS  Google Scholar 

  33. A. I. Slutsker, Yu. I. Polikarpov, and D. D. Karov, Polym. Sci., Ser. A 53, 1054 (2011).

    Article  CAS  Google Scholar 

  34. Yu. S. Lazurkin and R. L. Fogel’son, Zh. Teor. Fiz. 21, 267 (1954).

    Google Scholar 

  35. E. F. Oleinik, S. N. Rudnev, O. B. Salamatina, and M. I. Kotelyanskii, Polym. Sci., Ser. A 50, 494 (2008).

    Article  Google Scholar 

  36. E. F. Oleinik, S. N. Rudnev, and O. B. Salamatina, Dokl. Phys. Chem. 465, 259 (2015).

    Article  CAS  Google Scholar 

  37. M. S. Arzhakov, G. M. Lukovkin, and S. A. Arzhakov, Dokl. Ross. Akad. Nauk 369, 629 (1999).

    CAS  Google Scholar 

  38. D. S. Sanditov, Polym. Sci., Ser. A 49, 549 (2007).

    Article  Google Scholar 

  39. K. Chakh, S. A. Lyakhov, and V. A. Khonik, Deform. Razrushenie Mater., No. 8, 22 (2006).

  40. O. Benzine, S. Bruns, Z. Pan, K. Durst, and L. Wondraczek, Adv. Sci. (Weinh) 5, 1800916 (2018).

    Article  CAS  Google Scholar 

  41. D. S. Sanditov, S. Sh. Sangadiev, and B. D. Sanditov, Deform. Razrushenie Mater., No. 3, 2 (2013).

  42. D. S. Sanditov and S. Sh. Sangadiev, Fiz. Khim. Stekla 24, 741 (1998).

    Google Scholar 

  43. I. Sh. Magafurov, V. A. Topolkaraev, R. E. Markaryan, A. L. Kovarskii, and E. F. Oleinik, Vysokomol. Soedin., Ser. B 32, 147 (1991).

  44. E. M. Filyanov, Vysokomol. Soedin., Ser. A 29, 975 (1987).

    CAS  Google Scholar 

  45. G. Deng, C. S. Sunder, and Y. C. Jean, J. Phys. Chem. 96, 492 (1992).

    Article  CAS  Google Scholar 

  46. Y. C. Jean, H. Nakanishi, L. Y. Hao, and T. C. Sundereski, Phys. Rev. 2, 9705 (1990).

    Article  Google Scholar 

  47. T. V. Tropin, Yu. V. P. Schmelzer, and V. L. Aksenov, Phys. - Usp. 59, 42 (2016).

    Article  Google Scholar 

  48. W. Kauzmann, Chem. Rev. 43, 219 (1948).

    Article  CAS  Google Scholar 

  49. S. V. Nemilov, Fiz. Khim. Stekla 6, 257 (1980).

    CAS  Google Scholar 

  50. A. Ya. Belen’kii, Zh. Fiz. Khim. 57, 950 (1983).

    Google Scholar 

  51. A. A. Dunaev, Z. U. Borisova, M. D. Mikhailov, and I. V. Privalova, Fiz. Khim. Stekla 4, 346 (1978).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was financially supported by the Ministry of Education and Science (grant no. 3.5406.2017/8.9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Sanditov.

Additional information

Translated by E.V. Bushina

Derivation of Formula (3)

Derivation of Formula (3)

A necessary condition for the active (excited) atom delocalization, i.e., its ultimate displacement from the equilibrium position, is the formation of the elementary fluctuation volume \(\Delta {{v}_{{\text{e}}}}\) near it. The kinetic units of amorphous substances differ from each other mainly in the value of the fluctuation volume \(\tilde {v}\), which is formed in their neighborhood. The number of particles dn with a fluctuation volume from \(\tilde {v}\) to \(\tilde {v} + d\tilde {v}\) is described by the function [16]

$$dn = A\exp \left( { - \frac{H}{{kT}}} \right)d\tilde {v} = A\exp \left[ { - \frac{{\left( {{{p}_{{\text{i}}}} + p} \right)\tilde {v}}}{{kT}}} \right]d\tilde {v},$$

where \(H = ({{p}_{{\text{i}}}} + p)\tilde {v}\) is the enthalpy of the volume formation \(\tilde {v}\). The sum of internal pi and external p pressures (pi + p) acts as a constant independent of \(\tilde {v}\). After normalization

$$\int\limits_0^N {dn} = N,$$

making it possible to obtain the corresponding equation (N is the number of atoms)

$$A = \frac{{\left( {{{p}_{{\text{i}}}} + p} \right)N}}{{kT}},$$

the number of delocalized atoms Ne with \(\tilde {v} \geqslant \Delta {{v}_{{\text{e}}}}\) is found

$$\begin{gathered} {{N}_{{\text{e}}}} = \int\limits_{\Delta {{v}_{{\text{e}}}}}^\infty {\frac{{\left( {{{p}_{{\text{i}}}} + p} \right)N}}{{kT}}\exp \left[ { - \frac{{\left( {{{p}_{{\text{i}}}} + p} \right)\tilde {v}}}{{kT}}} \right]} d\tilde {v} \\ = \;N\exp \left[ { - \frac{{\left( {{{p}_{{\text{i}}}} + p} \right)\Delta {{v}_{{\text{e}}}}}}{{kT}}} \right], \\ \end{gathered} $$
((A1))

from which formula (3) follows

$$\frac{{{{N}_{{\text{e}}}}}}{N} = \exp \left( { - \frac{{\Delta {{\varepsilon }_{{\text{e}}}} + p\Delta {{v}_{{\text{e}}}}}}{{kT}}} \right),$$
((A2))

where \(\Delta {{\varepsilon }_{{\text{e}}}} = {{p}_{{\text{i}}}}\Delta {{v}_{{\text{e}}}}\) is the energy of the delocalized atoms.

At the usual atmospheric external pressure p ≈ 1 atm, in formula (A1), the internal pressure is much greater than the external one pip as solids and liquids have pi ≈ (104–105) atm [3]. In this regard, equality (A2) may be approximated in this case as

$$\frac{{{{N}_{{\text{e}}}}}}{N} \cong \exp \left( { - \frac{{\Delta {{\varepsilon }_{{\text{e}}}}}}{{kT}}} \right).$$
((A3))

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sanditov, D.S., Mashanov, A.A. Atom Delocalization and Fluctuation Hole Formation in Amorphous Organic Polymers and Inorganic Glasses. Polym. Sci. Ser. A 61, 119–127 (2019). https://doi.org/10.1134/S0965545X1902010X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X1902010X

Navigation